
Migration of utilities
Migration of applications

Migration to Dyalog examples
(part 2, still in progress. . . )

Dr. Markos Mitsos
markos.mitsos@ergo.de

Deutsche Krankenversicherung AG DKV - ERGO, Actuarial Department

APL Germany — Mainz

Mitsos Migration examples 2 1/20



Migration of utilities
Migration of applications

About

Report on migration progress:
from APL+Win to Dyalog
ongoing for years, moving really slow
“theory” explained at previous conferences

Details:
trying to create “true” Dyalog workspaces, not APL+Win
copies
in fact combined with overhauling of old code / structures
some examples and comparisons

Mitsos Migration examples 2 2/20



Migration of utilities
Migration of applications

About

Report on migration progress:
from APL+Win to Dyalog
ongoing for years, moving really slow
“theory” explained at previous conferences

Details:
trying to create “true” Dyalog workspaces, not APL+Win
copies
in fact combined with overhauling of old code / structures
some examples and comparisons

Mitsos Migration examples 2 2/20



Migration of utilities
Migration of applications

About

Report on migration progress:
from APL+Win to Dyalog
ongoing for years, moving really slow
“theory” explained at previous conferences

Details:
trying to create “true” Dyalog workspaces, not APL+Win
copies
in fact combined with overhauling of old code / structures
some examples and comparisons

Mitsos Migration examples 2 2/20



Migration of utilities
Migration of applications

About

Report on migration progress:
from APL+Win to Dyalog
ongoing for years, moving really slow
“theory” explained at previous conferences

Details:
trying to create “true” Dyalog workspaces, not APL+Win
copies
in fact combined with overhauling of old code / structures
some examples and comparisons

Mitsos Migration examples 2 2/20



Migration of utilities
Migration of applications

About

Report on migration progress:
from APL+Win to Dyalog
ongoing for years, moving really slow
“theory” explained at previous conferences

Details:
trying to create “true” Dyalog workspaces, not APL+Win
copies
in fact combined with overhauling of old code / structures
some examples and comparisons

Mitsos Migration examples 2 2/20



Migration of utilities
Migration of applications

About

Report on migration progress:
from APL+Win to Dyalog
ongoing for years, moving really slow
“theory” explained at previous conferences

Details:
trying to create “true” Dyalog workspaces, not APL+Win
copies
in fact combined with overhauling of old code / structures
some examples and comparisons

Mitsos Migration examples 2 2/20



Migration of utilities
Migration of applications

About

Report on migration progress:
from APL+Win to Dyalog
ongoing for years, moving really slow
“theory” explained at previous conferences

Details:
trying to create “true” Dyalog workspaces, not APL+Win
copies
in fact combined with overhauling of old code / structures
some examples and comparisons

Mitsos Migration examples 2 2/20



Migration of utilities
Migration of applications

About

Report on migration progress:
from APL+Win to Dyalog
ongoing for years, moving really slow
“theory” explained at previous conferences

Details:
trying to create “true” Dyalog workspaces, not APL+Win
copies
in fact combined with overhauling of old code / structures
some examples and comparisons

Mitsos Migration examples 2 2/20



Migration of utilities
Migration of applications

Outline

1 Migration of utilities

2 Migration of applications

Mitsos Migration examples 2 3/20



Migration of utilities
Migration of applications

Outline

1 Migration of utilities

2 Migration of applications

Mitsos Migration examples 2 3/20



Migration of utilities
Migration of applications

Structure
Components

Outline of section on utilities

In this section we outline:
Structure structure and error handling

Components basic components

Mitsos Migration examples 2 4/20



Migration of utilities
Migration of applications

Structure
Components

Outline of section on utilities

In this section we outline:
Structure structure and error handling

Components basic components

Mitsos Migration examples 2 4/20



Migration of utilities
Migration of applications

Structure
Components

Outline of section on utilities

In this section we outline:
Structure structure and error handling

Components basic components

Mitsos Migration examples 2 4/20



Migration of utilities
Migration of applications

Structure
Components

Workspace structure, versioning and testing

Two worlds
structure

APL+Win flat (RGL rather chaotic, only necessary part of
DIV)
Dyalog clearly structured (RGL easy to understand, whole DIV)

versioning
APL+Win manually (irregular WS copies, *_Ax in DIV,
ALT_* in RGL)
Dyalog decoupled, full SVN repository

testing
APL+Win manually (irregular, main functions and whole runs)
Dyalog automated (regular, component and basic blocks,
repeatable)

Mitsos Migration examples 2 5/20



Migration of utilities
Migration of applications

Structure
Components

Workspace structure, versioning and testing

Two worlds
structure

APL+Win flat (RGL rather chaotic, only necessary part of
DIV)
Dyalog clearly structured (RGL easy to understand, whole DIV)

versioning
APL+Win manually (irregular WS copies, *_Ax in DIV,
ALT_* in RGL)
Dyalog decoupled, full SVN repository

testing
APL+Win manually (irregular, main functions and whole runs)
Dyalog automated (regular, component and basic blocks,
repeatable)

Mitsos Migration examples 2 5/20



Migration of utilities
Migration of applications

Structure
Components

Workspace structure, versioning and testing

Two worlds
structure

APL+Win flat (RGL rather chaotic, only necessary part of
DIV)
Dyalog clearly structured (RGL easy to understand, whole DIV)

versioning
APL+Win manually (irregular WS copies, *_Ax in DIV,
ALT_* in RGL)
Dyalog decoupled, full SVN repository

testing
APL+Win manually (irregular, main functions and whole runs)
Dyalog automated (regular, component and basic blocks,
repeatable)

Mitsos Migration examples 2 5/20



Migration of utilities
Migration of applications

Structure
Components

Workspace structure, versioning and testing

Two worlds
structure

APL+Win flat (RGL rather chaotic, only necessary part of
DIV)
Dyalog clearly structured (RGL easy to understand, whole DIV)

versioning
APL+Win manually (irregular WS copies, *_Ax in DIV,
ALT_* in RGL)
Dyalog decoupled, full SVN repository

testing
APL+Win manually (irregular, main functions and whole runs)
Dyalog automated (regular, component and basic blocks,
repeatable)

Mitsos Migration examples 2 5/20



Migration of utilities
Migration of applications

Structure
Components

Workspace structure, versioning and testing

Two worlds
structure

APL+Win flat (RGL rather chaotic, only necessary part of
DIV)
Dyalog clearly structured (RGL easy to understand, whole DIV)

versioning
APL+Win manually (irregular WS copies, *_Ax in DIV,
ALT_* in RGL)
Dyalog decoupled, full SVN repository

testing
APL+Win manually (irregular, main functions and whole runs)
Dyalog automated (regular, component and basic blocks,
repeatable)

Mitsos Migration examples 2 5/20



Migration of utilities
Migration of applications

Structure
Components

Workspace structure, versioning and testing

Two worlds
structure

APL+Win flat (RGL rather chaotic, only necessary part of
DIV)
Dyalog clearly structured (RGL easy to understand, whole DIV)

versioning
APL+Win manually (irregular WS copies, *_Ax in DIV,
ALT_* in RGL)
Dyalog decoupled, full SVN repository

testing
APL+Win manually (irregular, main functions and whole runs)
Dyalog automated (regular, component and basic blocks,
repeatable)

Mitsos Migration examples 2 5/20



Migration of utilities
Migration of applications

Structure
Components

Workspace structure, versioning and testing

Two worlds
structure

APL+Win flat (RGL rather chaotic, only necessary part of
DIV)
Dyalog clearly structured (RGL easy to understand, whole DIV)

versioning
APL+Win manually (irregular WS copies, *_Ax in DIV,
ALT_* in RGL)
Dyalog decoupled, full SVN repository

testing
APL+Win manually (irregular, main functions and whole runs)
Dyalog automated (regular, component and basic blocks,
repeatable)

Mitsos Migration examples 2 5/20



Migration of utilities
Migration of applications

Structure
Components

Workspace structure, versioning and testing

Two worlds
structure

APL+Win flat (RGL rather chaotic, only necessary part of
DIV)
Dyalog clearly structured (RGL easy to understand, whole DIV)

versioning
APL+Win manually (irregular WS copies, *_Ax in DIV,
ALT_* in RGL)
Dyalog decoupled, full SVN repository

testing
APL+Win manually (irregular, main functions and whole runs)
Dyalog automated (regular, component and basic blocks,
repeatable)

Mitsos Migration examples 2 5/20



Migration of utilities
Migration of applications

Structure
Components

Workspace structure, versioning and testing

Two worlds
structure

APL+Win flat (RGL rather chaotic, only necessary part of
DIV)
Dyalog clearly structured (RGL easy to understand, whole DIV)

versioning
APL+Win manually (irregular WS copies, *_Ax in DIV,
ALT_* in RGL)
Dyalog decoupled, full SVN repository

testing
APL+Win manually (irregular, main functions and whole runs)
Dyalog automated (regular, component and basic blocks,
repeatable)

Mitsos Migration examples 2 5/20



Migration of utilities
Migration of applications

Structure
Components

Workspace structure, versioning and testing

Two worlds
structure

APL+Win flat (RGL rather chaotic, only necessary part of
DIV)
Dyalog clearly structured (RGL easy to understand, whole DIV)

versioning
APL+Win manually (irregular WS copies, *_Ax in DIV,
ALT_* in RGL)
Dyalog decoupled, full SVN repository

testing
APL+Win manually (irregular, main functions and whole runs)
Dyalog automated (regular, component and basic blocks,
repeatable)

Mitsos Migration examples 2 5/20



Migration of utilities
Migration of applications

Structure
Components

Local and global objects

Great differences
localisation

APL+Win very long header (GUI+results in main object RGL)
Dyalog multi-line header (and reduction through namespaces)

globals
APL+Win flat (pick appropriate names, problems with
shadowing)
Dyalog dedicated namespaces, centrally “registered”

Mitsos Migration examples 2 6/20



Migration of utilities
Migration of applications

Structure
Components

Local and global objects

Great differences
localisation

APL+Win very long header (GUI+results in main object RGL)
Dyalog multi-line header (and reduction through namespaces)

globals
APL+Win flat (pick appropriate names, problems with
shadowing)
Dyalog dedicated namespaces, centrally “registered”

Mitsos Migration examples 2 6/20



Migration of utilities
Migration of applications

Structure
Components

Local and global objects

Great differences
localisation

APL+Win very long header (GUI+results in main object RGL)
Dyalog multi-line header (and reduction through namespaces)

globals
APL+Win flat (pick appropriate names, problems with
shadowing)
Dyalog dedicated namespaces, centrally “registered”

Mitsos Migration examples 2 6/20



Migration of utilities
Migration of applications

Structure
Components

Local and global objects

Great differences
localisation

APL+Win very long header (GUI+results in main object RGL)
Dyalog multi-line header (and reduction through namespaces)

globals
APL+Win flat (pick appropriate names, problems with
shadowing)
Dyalog dedicated namespaces, centrally “registered”

Mitsos Migration examples 2 6/20



Migration of utilities
Migration of applications

Structure
Components

Local and global objects

Great differences
localisation

APL+Win very long header (GUI+results in main object RGL)
Dyalog multi-line header (and reduction through namespaces)

globals
APL+Win flat (pick appropriate names, problems with
shadowing)
Dyalog dedicated namespaces, centrally “registered”

Mitsos Migration examples 2 6/20



Migration of utilities
Migration of applications

Structure
Components

Local and global objects

Great differences
localisation

APL+Win very long header (GUI+results in main object RGL)
Dyalog multi-line header (and reduction through namespaces)

globals
APL+Win flat (pick appropriate names, problems with
shadowing)
Dyalog dedicated namespaces, centrally “registered”

Mitsos Migration examples 2 6/20



Migration of utilities
Migration of applications

Structure
Components

Local and global objects

Great differences
localisation

APL+Win very long header (GUI+results in main object RGL)
Dyalog multi-line header (and reduction through namespaces)

globals
APL+Win flat (pick appropriate names, problems with
shadowing)
Dyalog dedicated namespaces, centrally “registered”

Mitsos Migration examples 2 6/20



Migration of utilities
Migration of applications

Structure
Components

Error code versus signalling error

New philosophy
principle

APL+Win (almost) always result type + result / error code
Dyalog always signalling error to calling environment

usage
APL+Win without distinctions
Dyalog anticipation of some problems, distinction and control
of error “level” (easier to call)

Mitsos Migration examples 2 7/20



Migration of utilities
Migration of applications

Structure
Components

Error code versus signalling error

New philosophy
principle

APL+Win (almost) always result type + result / error code
Dyalog always signalling error to calling environment

usage
APL+Win without distinctions
Dyalog anticipation of some problems, distinction and control
of error “level” (easier to call)

Mitsos Migration examples 2 7/20



Migration of utilities
Migration of applications

Structure
Components

Error code versus signalling error

New philosophy
principle

APL+Win (almost) always result type + result / error code
Dyalog always signalling error to calling environment

usage
APL+Win without distinctions
Dyalog anticipation of some problems, distinction and control
of error “level” (easier to call)

Mitsos Migration examples 2 7/20



Migration of utilities
Migration of applications

Structure
Components

Error code versus signalling error

New philosophy
principle

APL+Win (almost) always result type + result / error code
Dyalog always signalling error to calling environment

usage
APL+Win without distinctions
Dyalog anticipation of some problems, distinction and control
of error “level” (easier to call)

Mitsos Migration examples 2 7/20



Migration of utilities
Migration of applications

Structure
Components

Error code versus signalling error

New philosophy
principle

APL+Win (almost) always result type + result / error code
Dyalog always signalling error to calling environment

usage
APL+Win without distinctions
Dyalog anticipation of some problems, distinction and control
of error “level” (easier to call)

Mitsos Migration examples 2 7/20



Migration of utilities
Migration of applications

Structure
Components

Error code versus signalling error

New philosophy
principle

APL+Win (almost) always result type + result / error code
Dyalog always signalling error to calling environment

usage
APL+Win without distinctions
Dyalog anticipation of some problems, distinction and control
of error “level” (easier to call)

Mitsos Migration examples 2 7/20



Migration of utilities
Migration of applications

Structure
Components

Error code versus signalling error

New philosophy
principle

APL+Win (almost) always result type + result / error code
Dyalog always signalling error to calling environment

usage
APL+Win without distinctions
Dyalog anticipation of some problems, distinction and control
of error “level” (easier to call)

Mitsos Migration examples 2 7/20



Migration of utilities
Migration of applications

Structure
Components

Dfns and small algorithms

Dfns and Dops (for small algorithms) as new tool
APL+Win trim written out because too small for fn
Dyalog Dfn OK as separate object
collect some small algorithms as utilities
also useful inline

Mitsos Migration examples 2 8/20



Migration of utilities
Migration of applications

Structure
Components

Dfns and small algorithms

Dfns and Dops (for small algorithms) as new tool
APL+Win trim written out because too small for fn
Dyalog Dfn OK as separate object
collect some small algorithms as utilities
also useful inline

Mitsos Migration examples 2 8/20



Migration of utilities
Migration of applications

Structure
Components

Dfns and small algorithms

Dfns and Dops (for small algorithms) as new tool
APL+Win trim written out because too small for fn
Dyalog Dfn OK as separate object
collect some small algorithms as utilities
also useful inline

Mitsos Migration examples 2 8/20



Migration of utilities
Migration of applications

Structure
Components

Dfns and small algorithms

Dfns and Dops (for small algorithms) as new tool
APL+Win trim written out because too small for fn
Dyalog Dfn OK as separate object
collect some small algorithms as utilities
also useful inline

Mitsos Migration examples 2 8/20



Migration of utilities
Migration of applications

Structure
Components

Dfns and small algorithms

Dfns and Dops (for small algorithms) as new tool
APL+Win trim written out because too small for fn
Dyalog Dfn OK as separate object
collect some small algorithms as utilities
also useful inline

Mitsos Migration examples 2 8/20



Migration of utilities
Migration of applications

Structure
Components

Modified assignment and COM as namespace

Clarity and uniformity of code
building of lists or statements better readable with modified
assignment
exposition of COM objects as namespaces allows usage via
APL syntax

Mitsos Migration examples 2 9/20



Migration of utilities
Migration of applications

Structure
Components

Modified assignment and COM as namespace

Clarity and uniformity of code
building of lists or statements better readable with modified
assignment
exposition of COM objects as namespaces allows usage via
APL syntax

Mitsos Migration examples 2 9/20



Migration of utilities
Migration of applications

Structure
Components

Modified assignment and COM as namespace

Clarity and uniformity of code
building of lists or statements better readable with modified
assignment
exposition of COM objects as namespaces allows usage via
APL syntax

Mitsos Migration examples 2 9/20



Migration of utilities
Migration of applications

Structure
Components

More/other (newer) system functions

Reduction of own functions, new functionality
existence and erasure of files (fso objects versus �NEXISTS and
�DELETE)
reading / writing small files (�NGET and �NPUT compact)
date arithmetic (own algorithms versus �DT)
usage of regular expressions (�S and �R)

Mitsos Migration examples 2 10/20



Migration of utilities
Migration of applications

Structure
Components

More/other (newer) system functions

Reduction of own functions, new functionality
existence and erasure of files (fso objects versus �NEXISTS and
�DELETE)
reading / writing small files (�NGET and �NPUT compact)
date arithmetic (own algorithms versus �DT)
usage of regular expressions (�S and �R)

Mitsos Migration examples 2 10/20



Migration of utilities
Migration of applications

Structure
Components

More/other (newer) system functions

Reduction of own functions, new functionality
existence and erasure of files (fso objects versus �NEXISTS and
�DELETE)
reading / writing small files (�NGET and �NPUT compact)
date arithmetic (own algorithms versus �DT)
usage of regular expressions (�S and �R)

Mitsos Migration examples 2 10/20



Migration of utilities
Migration of applications

Structure
Components

More/other (newer) system functions

Reduction of own functions, new functionality
existence and erasure of files (fso objects versus �NEXISTS and
�DELETE)
reading / writing small files (�NGET and �NPUT compact)
date arithmetic (own algorithms versus �DT)
usage of regular expressions (�S and �R)

Mitsos Migration examples 2 10/20



Migration of utilities
Migration of applications

Structure
Components

More/other (newer) system functions

Reduction of own functions, new functionality
existence and erasure of files (fso objects versus �NEXISTS and
�DELETE)
reading / writing small files (�NGET and �NPUT compact)
date arithmetic (own algorithms versus �DT)
usage of regular expressions (�S and �R)

Mitsos Migration examples 2 10/20



Migration of utilities
Migration of applications

Structure
Components

More (newer) primitives

Reduction of own functions, new functionality, clarity of code
At @ makes code clearer and avoids necessity to assign
Key 8 for structure and grouped operations
Power c for conditional application — but also a “real” case!

Mitsos Migration examples 2 11/20



Migration of utilities
Migration of applications

Structure
Components

More (newer) primitives

Reduction of own functions, new functionality, clarity of code
At @ makes code clearer and avoids necessity to assign
Key 8 for structure and grouped operations
Power c for conditional application — but also a “real” case!

Mitsos Migration examples 2 11/20



Migration of utilities
Migration of applications

Structure
Components

More (newer) primitives

Reduction of own functions, new functionality, clarity of code
At @ makes code clearer and avoids necessity to assign
Key 8 for structure and grouped operations
Power c for conditional application — but also a “real” case!

Mitsos Migration examples 2 11/20



Migration of utilities
Migration of applications

Structure
Components

More (newer) primitives

Reduction of own functions, new functionality, clarity of code
At @ makes code clearer and avoids necessity to assign
Key 8 for structure and grouped operations
Power c for conditional application — but also a “real” case!

Mitsos Migration examples 2 11/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Outline of section on applications

In this section we outline:
Interactive interactive elements

Enhancement enhancement through function separation
Passing data passing data as parameters and globals

Mitsos Migration examples 2 12/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Outline of section on applications

In this section we outline:
Interactive interactive elements

Enhancement enhancement through function separation
Passing data passing data as parameters and globals

Mitsos Migration examples 2 12/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Outline of section on applications

In this section we outline:
Interactive interactive elements

Enhancement enhancement through function separation
Passing data passing data as parameters and globals

Mitsos Migration examples 2 12/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Outline of section on applications

In this section we outline:
Interactive interactive elements

Enhancement enhancement through function separation
Passing data passing data as parameters and globals

Mitsos Migration examples 2 12/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Main and parameter GUI

Schematic interaction with user
APL+Win main GUIs similar, Dyalog schematic
APL+Win parameter GUIs based on pages, Dyalog on
subforms
multiple Grids allowed

Mitsos Migration examples 2 13/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Main and parameter GUI

Schematic interaction with user
APL+Win main GUIs similar, Dyalog schematic
APL+Win parameter GUIs based on pages, Dyalog on
subforms
multiple Grids allowed

Mitsos Migration examples 2 13/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Main and parameter GUI

Schematic interaction with user
APL+Win main GUIs similar, Dyalog schematic
APL+Win parameter GUIs based on pages, Dyalog on
subforms
multiple Grids allowed

Mitsos Migration examples 2 13/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Main and parameter GUI

Schematic interaction with user
APL+Win main GUIs similar, Dyalog schematic
APL+Win parameter GUIs based on pages, Dyalog on
subforms
multiple Grids allowed

Mitsos Migration examples 2 13/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Running protocol

Visible protocol
APL+Win Class as variant of Windows Form
APL+Win Instance residing “somewhere”, passed as name of
Windows object
Dyalog Class proper class containing Form
Dyalog Instance proper namespace, passed as reference,
“saved” as global reference
added methods for timestamping message and reacting to
decision

Mitsos Migration examples 2 14/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Running protocol

Visible protocol
APL+Win Class as variant of Windows Form
APL+Win Instance residing “somewhere”, passed as name of
Windows object
Dyalog Class proper class containing Form
Dyalog Instance proper namespace, passed as reference,
“saved” as global reference
added methods for timestamping message and reacting to
decision

Mitsos Migration examples 2 14/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Running protocol

Visible protocol
APL+Win Class as variant of Windows Form
APL+Win Instance residing “somewhere”, passed as name of
Windows object
Dyalog Class proper class containing Form
Dyalog Instance proper namespace, passed as reference,
“saved” as global reference
added methods for timestamping message and reacting to
decision

Mitsos Migration examples 2 14/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Running protocol

Visible protocol
APL+Win Class as variant of Windows Form
APL+Win Instance residing “somewhere”, passed as name of
Windows object
Dyalog Class proper class containing Form
Dyalog Instance proper namespace, passed as reference,
“saved” as global reference
added methods for timestamping message and reacting to
decision

Mitsos Migration examples 2 14/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Running protocol

Visible protocol
APL+Win Class as variant of Windows Form
APL+Win Instance residing “somewhere”, passed as name of
Windows object
Dyalog Class proper class containing Form
Dyalog Instance proper namespace, passed as reference,
“saved” as global reference
added methods for timestamping message and reacting to
decision

Mitsos Migration examples 2 14/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Running protocol

Visible protocol
APL+Win Class as variant of Windows Form
APL+Win Instance residing “somewhere”, passed as name of
Windows object
Dyalog Class proper class containing Form
Dyalog Instance proper namespace, passed as reference,
“saved” as global reference
added methods for timestamping message and reacting to
decision

Mitsos Migration examples 2 14/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Usage of DB2 Utilities (function separation)

separating Code for a DB2 Utility from that one
APL+Win one function for unloading tables
code partly redundant with function for cross-loading data
code partly generic batch job / DB2 Utility code
Dyalog generic part as utility (DIV), redundant part as
separate function

Mitsos Migration examples 2 15/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Usage of DB2 Utilities (function separation)

separating Code for a DB2 Utility from that one
APL+Win one function for unloading tables
code partly redundant with function for cross-loading data
code partly generic batch job / DB2 Utility code
Dyalog generic part as utility (DIV), redundant part as
separate function

Mitsos Migration examples 2 15/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Usage of DB2 Utilities (function separation)

separating Code for a DB2 Utility from that one
APL+Win one function for unloading tables
code partly redundant with function for cross-loading data
code partly generic batch job / DB2 Utility code
Dyalog generic part as utility (DIV), redundant part as
separate function

Mitsos Migration examples 2 15/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Usage of DB2 Utilities (function separation)

separating Code for a DB2 Utility from that one
APL+Win one function for unloading tables
code partly redundant with function for cross-loading data
code partly generic batch job / DB2 Utility code
Dyalog generic part as utility (DIV), redundant part as
separate function

Mitsos Migration examples 2 15/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Usage of DB2 Utilities (function separation)

separating Code for a DB2 Utility from that one
APL+Win one function for unloading tables
code partly redundant with function for cross-loading data
code partly generic batch job / DB2 Utility code
Dyalog generic part as utility (DIV), redundant part as
separate function

Mitsos Migration examples 2 15/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Globalisation of result (function separation)

separating Code for using a global result from that one
APL+Win read/write cases for component files in many
functions
code partly redundant
corresponding “namespaces” only workaround
Dyalog generic part as utility (DIV), clarifies and shortens
other functions

Mitsos Migration examples 2 16/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Globalisation of result (function separation)

separating Code for using a global result from that one
APL+Win read/write cases for component files in many
functions
code partly redundant
corresponding “namespaces” only workaround
Dyalog generic part as utility (DIV), clarifies and shortens
other functions

Mitsos Migration examples 2 16/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Globalisation of result (function separation)

separating Code for using a global result from that one
APL+Win read/write cases for component files in many
functions
code partly redundant
corresponding “namespaces” only workaround
Dyalog generic part as utility (DIV), clarifies and shortens
other functions

Mitsos Migration examples 2 16/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Globalisation of result (function separation)

separating Code for using a global result from that one
APL+Win read/write cases for component files in many
functions
code partly redundant
corresponding “namespaces” only workaround
Dyalog generic part as utility (DIV), clarifies and shortens
other functions

Mitsos Migration examples 2 16/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Globalisation of result (function separation)

separating Code for using a global result from that one
APL+Win read/write cases for component files in many
functions
code partly redundant
corresponding “namespaces” only workaround
Dyalog generic part as utility (DIV), clarifies and shortens
other functions

Mitsos Migration examples 2 16/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Provision of actuarial data (code split)

splitting Code in homogenous parts
APL+Win function grown (and grown. . . ) over the years
Dyalog base part as function in “transferable” namespace
main part pruned, internal calculations as separate function,
subfunctions bundled
lists collected as parameters

Mitsos Migration examples 2 17/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Provision of actuarial data (code split)

splitting Code in homogenous parts
APL+Win function grown (and grown. . . ) over the years
Dyalog base part as function in “transferable” namespace
main part pruned, internal calculations as separate function,
subfunctions bundled
lists collected as parameters

Mitsos Migration examples 2 17/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Provision of actuarial data (code split)

splitting Code in homogenous parts
APL+Win function grown (and grown. . . ) over the years
Dyalog base part as function in “transferable” namespace
main part pruned, internal calculations as separate function,
subfunctions bundled
lists collected as parameters

Mitsos Migration examples 2 17/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Provision of actuarial data (code split)

splitting Code in homogenous parts
APL+Win function grown (and grown. . . ) over the years
Dyalog base part as function in “transferable” namespace
main part pruned, internal calculations as separate function,
subfunctions bundled
lists collected as parameters

Mitsos Migration examples 2 17/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Provision of actuarial data (code split)

splitting Code in homogenous parts
APL+Win function grown (and grown. . . ) over the years
Dyalog base part as function in “transferable” namespace
main part pruned, internal calculations as separate function,
subfunctions bundled
lists collected as parameters

Mitsos Migration examples 2 17/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

“Small” namespaces

Usage of “small” namespaces to group arguments / parameters
APL+Win high number of needed parameters lead to different
and/or confusing calls
Dyalog aggregation of parameters with similar function
facilitated uniform, better readable call
regst for “regular steering”, sondst for specials like debugging,
hinw for logging of problems
for clarity pruned copies of such namespaces in “leafs”
chaos in higher-up functions avoided

Mitsos Migration examples 2 18/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

“Small” namespaces

Usage of “small” namespaces to group arguments / parameters
APL+Win high number of needed parameters lead to different
and/or confusing calls
Dyalog aggregation of parameters with similar function
facilitated uniform, better readable call
regst for “regular steering”, sondst for specials like debugging,
hinw for logging of problems
for clarity pruned copies of such namespaces in “leafs”
chaos in higher-up functions avoided

Mitsos Migration examples 2 18/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

“Small” namespaces

Usage of “small” namespaces to group arguments / parameters
APL+Win high number of needed parameters lead to different
and/or confusing calls
Dyalog aggregation of parameters with similar function
facilitated uniform, better readable call
regst for “regular steering”, sondst for specials like debugging,
hinw for logging of problems
for clarity pruned copies of such namespaces in “leafs”
chaos in higher-up functions avoided

Mitsos Migration examples 2 18/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

“Small” namespaces

Usage of “small” namespaces to group arguments / parameters
APL+Win high number of needed parameters lead to different
and/or confusing calls
Dyalog aggregation of parameters with similar function
facilitated uniform, better readable call
regst for “regular steering”, sondst for specials like debugging,
hinw for logging of problems
for clarity pruned copies of such namespaces in “leafs”
chaos in higher-up functions avoided

Mitsos Migration examples 2 18/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

“Small” namespaces

Usage of “small” namespaces to group arguments / parameters
APL+Win high number of needed parameters lead to different
and/or confusing calls
Dyalog aggregation of parameters with similar function
facilitated uniform, better readable call
regst for “regular steering”, sondst for specials like debugging,
hinw for logging of problems
for clarity pruned copies of such namespaces in “leafs”
chaos in higher-up functions avoided

Mitsos Migration examples 2 18/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

“Small” namespaces

Usage of “small” namespaces to group arguments / parameters
APL+Win high number of needed parameters lead to different
and/or confusing calls
Dyalog aggregation of parameters with similar function
facilitated uniform, better readable call
regst for “regular steering”, sondst for specials like debugging,
hinw for logging of problems
for clarity pruned copies of such namespaces in “leafs”
chaos in higher-up functions avoided

Mitsos Migration examples 2 18/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Local, semi-global and global

Very high number of variables with significant amount of data
APL+Win actuarial data could practically not passed on as
parameters
ugly, semi-globals solution used, localisation in main function,
“transparency” in dependent ones
additionally data “saved” as true globals at end of function
Dyalog actuarial data is namespace, passed as reference
dependent functions make copy, modify and return it, calling
one uses modification
global copy if requested

Mitsos Migration examples 2 19/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Local, semi-global and global

Very high number of variables with significant amount of data
APL+Win actuarial data could practically not passed on as
parameters
ugly, semi-globals solution used, localisation in main function,
“transparency” in dependent ones
additionally data “saved” as true globals at end of function
Dyalog actuarial data is namespace, passed as reference
dependent functions make copy, modify and return it, calling
one uses modification
global copy if requested

Mitsos Migration examples 2 19/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Local, semi-global and global

Very high number of variables with significant amount of data
APL+Win actuarial data could practically not passed on as
parameters
ugly, semi-globals solution used, localisation in main function,
“transparency” in dependent ones
additionally data “saved” as true globals at end of function
Dyalog actuarial data is namespace, passed as reference
dependent functions make copy, modify and return it, calling
one uses modification
global copy if requested

Mitsos Migration examples 2 19/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Local, semi-global and global

Very high number of variables with significant amount of data
APL+Win actuarial data could practically not passed on as
parameters
ugly, semi-globals solution used, localisation in main function,
“transparency” in dependent ones
additionally data “saved” as true globals at end of function
Dyalog actuarial data is namespace, passed as reference
dependent functions make copy, modify and return it, calling
one uses modification
global copy if requested

Mitsos Migration examples 2 19/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Local, semi-global and global

Very high number of variables with significant amount of data
APL+Win actuarial data could practically not passed on as
parameters
ugly, semi-globals solution used, localisation in main function,
“transparency” in dependent ones
additionally data “saved” as true globals at end of function
Dyalog actuarial data is namespace, passed as reference
dependent functions make copy, modify and return it, calling
one uses modification
global copy if requested

Mitsos Migration examples 2 19/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Local, semi-global and global

Very high number of variables with significant amount of data
APL+Win actuarial data could practically not passed on as
parameters
ugly, semi-globals solution used, localisation in main function,
“transparency” in dependent ones
additionally data “saved” as true globals at end of function
Dyalog actuarial data is namespace, passed as reference
dependent functions make copy, modify and return it, calling
one uses modification
global copy if requested

Mitsos Migration examples 2 19/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Local, semi-global and global

Very high number of variables with significant amount of data
APL+Win actuarial data could practically not passed on as
parameters
ugly, semi-globals solution used, localisation in main function,
“transparency” in dependent ones
additionally data “saved” as true globals at end of function
Dyalog actuarial data is namespace, passed as reference
dependent functions make copy, modify and return it, calling
one uses modification
global copy if requested

Mitsos Migration examples 2 19/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Conclusion

Future:
infrastructure almost done
simulations proper on the horizon
still long-time project. . .

begin

Mitsos Migration examples 2 20/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Conclusion

Future:
infrastructure almost done
simulations proper on the horizon
still long-time project. . .

begin

Mitsos Migration examples 2 20/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Conclusion

Future:
infrastructure almost done
simulations proper on the horizon
still long-time project. . .

begin

Mitsos Migration examples 2 20/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Conclusion

Future:
infrastructure almost done
simulations proper on the horizon
still long-time project. . .

begin

Mitsos Migration examples 2 20/20



Migration of utilities
Migration of applications

Interactive
Enhancement
Passing data

Conclusion

Future:
infrastructure almost done
simulations proper on the horizon
still long-time project. . .

begin

Mitsos Migration examples 2 20/20


	Migration of utilities
	Structure and error handling
	Basic components

	Migration of applications
	Interactive elements
	Enhancement through structure upgrade
	Passing data as parameters and globals


