
Mainz, April 30th 2024

Migrating to Dyalog

Morten Kromberg, CTO

Migrating to Dyalog
1 Spring '24

 Dyalog APL was created by Dyadic Systems Ltd in 1981
 To replace mainframe APL systems

 Almost all users of Dyalog APL are migrants
 from SHARP APL, IBM APL2, APL+Win, APLX, or DEC APLSF, or …

 Waves of migrants
 Death of mainframes and minicomputers (1980's)

 Superior support for Windows GUI (1990's)

 Now, "the cloud" (& a few more mainframes being shut down)

A New Wave of Migrants

Migrating to Dyalog
2 Spring '24

 Dyalog re-invests 90-95% of revenues in
 Enhancing APL core technology

 Creating tools for APL developers

 Marketing APL outside the current APL community

 Combined revenues of products and services
based on Dyalog APL exceeds $1Bn per year – and
is growing

Why migrate to Dyalog?

Migrating to Dyalog
3 Spring '24

 Web Server and Web Service Frameworks
 Run APL as a Windows Service
 Public Docker Containers
 Remote IDE for debugging service

processes
 Health Monitor for monitoring multiple

processes
 Parallel and Asynchronous Execution
 New Data Types:

 128-bit Decimal Floating Point
 Complex Numbers

 Functional Programming (dfns)
 New primitives: Key, Stencil, Where, …
 Significant steps towards an APL compiler
 Many speed-ups of interpreter algorithms

 Object Orientation
 Microsoft.Net Integration
 HTMLRenderer object embeds Chromium

Web Browser engine
 64-bit: *NO* workspace or component file

size limits
 Unicode Support, APL Source in Text Files
 Secure TCP Sockets w/ IPv6 Support
 Encryption Toolkit
 Regular Expressions (PCRE) built-in to APL
 XML and JSON parsers for fast conversion

to (and from) APL structures

Selected Features added 2006-2024

Most features identical across all platforms

Migrating to Dyalog
4 Spring '24

Developer tools are free, cross-platform and mostly open source:

Why Migrate to Dyalog?

Name Description

SQAPL ODBC Interface (also ADO and
ADO.NET)

Jarvis HTTP/JSON and REST service
framework

HttpCommand HTTP client

SAWS SOAP service framework

Conga TCP and UDP layer

SharpPlot Business and Technical graphics

⎕XML, ⎕JSON, ⎕CSV Built in to interpreter

Name Description

RConnect Interface to R

MiServer / DUI Web Application Framework

Docker Containers Published examples

Link Interface to source code management

APLProcess And isolates

Migrating to Dyalog
5 Spring '24

Emerging Tools

Why Migrate to Dyalog?

Name Description

Cider Project Management

Tatin Package Manager

NuGet Interface to .NET Packages

Selenium Automated GUI testing

Jupyter Jupyter notebooks containing APL

eWC JavaScript emulation of Win32 GUI

Arrow & Parquet Data Science data formats

Name Description

DFS Dyalog File Server ("SHAREFILE")

Static Analysis Static Analyisis of APL Code
(code linting and vulnerability detection)
Planned for 2025

Separately Licensed Tools

Migrating to Dyalog
6 Spring '24

Dyalog is 100% Cross Platform
 Born under UNIX (Solaris, AIX, …)

 Ported to DOS, Windows, Linux (ARM, Intel), MacOS (Intel, Mx)

 Single source for all platforms
 Workspaces and component files compatible across all platforms

 All tools are tested on all platforms
 Exceptions where O/S does not provide a feature

 .NET not under AIX, many Windows-only features like DDE, COM/OLE

Why Migrate to Dyalog?

Migrating to Dyalog
7 Spring '24

 Connect to and debug Dyalog APL
running on any platform

 From Windows, Linux or MacOS

 Or indeed a browser running anywhere…
 Interpreter can serve up RIDE as a web app

Remote IDE (RIDE)

Migrating to Dyalog
8 Spring '24

RIDE running in a browser

Migrating to Dyalog
9 Spring '24

Dyalog is "Cloud Ready"
 ARM and Intel Linux versions
 Public Docker containers
 Remote IDE
 Text-based source supports "Continuous Integration"

 Build & deploy containers on commit or push

 User community starting to gain significant experience
 Working on tools to port Windows GUI to HTML/JS

Why Migrate to Dyalog?

Migrating to Dyalog
10 Spring '24

 Dyalog APL is fast!

 Core algorithms regularly updated to take
advantage of new hardware and new theory

 Research into a compiler continues

Why Migrate to Dyalog?

Migrating to Dyalog
11 Spring '24

Dyalog APL is carefully designed to last. For example:
 Dyalog APL is tightly integrated with .NET

 … and still supports the old .NET Framework
 However, Dyalog APL does not and WILL NOT depend on .NET
 It also runs under IBM AIX, where .NET does not exist

 Dyalog *will* remain very portable and independent of
"temporary" frameworks

Why Migrate to Dyalog?

Migrating to Dyalog
12 Spring '24

The Real Reason to Pick Dyalog APL

Migrating to Dyalog
13 Spring '24

1. From IBM / Logon APL2

2. From APL+Win or MicroAPL APLX

HOW to Migrate to Dyalog APL

Migrating to Dyalog
14 Spring '24

Relatively straightforward

 A few language differences

 User Interfaces and file I/O are usually handled by simple
cover-functions and possible to emulate automatically

 Linux or Windows apps may be making external calls
which will require "tweaking"

 Considering implementing "format by example" but so far
it has not been necessary

 '555-5555'⍕nums

 Easy to model in APL if necessary

From APL2

Migrating to Dyalog
15 Spring '24

 Insurance company
 No UI, manipulates text and Excel files

 Handled by European Consulting Partner

 Sandvik (Sweden) – in progress: Mainframe APL2 direct to Docker
Containers and HTML/svg
 Handled by Tiamatica in Malmö (Gilgamesh Athoraya)

 BIG Jewellers: Windows
 Handled by customer "with a little help"

 Two more under discussion
 (Germany, Canada)

Recent / Active APL2 Migrations

Migrating to Dyalog
16 Spring '24

Migrated APL2 Mainframe UI

Migrating to Dyalog
17 Spring '24

Migrated APL2 Mainframe UI

Migrating to Dyalog
18 Spring '24

From APL+Win or MicroAPL APLX

Same language differences as APL2, plus:

 Many system functions & control
structures not found in Dyalog APL

 Double quotes ("Don't do this!")

 Advanced Graphical User Interfaces

 Calls to external libraries

Migrating to Dyalog
19 Spring '24

 MicroAPL stopped developing APLX in 2016
 Dyalog hosts a download of the last free version

 Dyalog developed migration tools in 2016

APLX Migrations

Migrating to Dyalog
20 Spring '24

 Two European Insurance companies
 One with GUI, completely rewritten in Dyalog APL, the other a

pure service converted to Jarvis in Linux containers

 Handled by a European consulting partner

 METSIM® - in progress
 Dyalog engaged to perform this migration

 Will be used to develop tools to automate migration,
including the Graphical User Interface

 Met one more potential migrant last week

Recent / Active APL+Win Migrations

Migrating to Dyalog
21 Spring '24

/ is sometimes a function in Dyalog APL
1 0 1/¨'ABC' 'DEF' 'GHI'

←Y

Differences which are "easy"

'AC' 'DF' 'GI' vs
'ABC' 'GHI'

Translate /¨ to ∘/¨

Not supported in Dyalog
Translate ← to {}

Migrating to Dyalog
22 Spring '24

⎕XLIB

Other "Easy" Differences
System function not in Dyalog

R←∆XLIB X
X,←'*'↓⍨≢X
:If 0∊⍴R←↑⊃⎕NINFO⍠1⊢X

:If ∨/'?*'∊X
R←0 0⍴' '

:Else
'XFHOST ERROR FindFirstFile 1 0 3 The system cannot find the path specified.'

⎕SIGNAL 22
:EndIf

:Else
R←R[⍋R;]

:EndIf

Migrating to Dyalog
23 Spring '24

A B[I]

f.g when f or g
are not scalar functions

Fortunately, these are very rare in practice

:LeaveIf

Tricky Differences
A (B[I]) or
(A B)[I] ?

Detect and rewrite

Enhance Interpreter

Migrating to Dyalog
24 Spring '24

 Component Files

 User Interfaces (especially Graphical)

 Other I/O (e.g. SQL Databases)

 External Library Calls

The Hard Parts

Migrating to Dyalog
25 Spring '24

 We will develop an APL+Win COM server to
read/write APL+Win component files directly
from Dyalog APL

 Avoid the need for "big bang" data migrations
 Component files can be migrated over time

Component Files

Migrating to Dyalog
26 Spring '24

Dyalog is building an emulator to support the
METSIM® migration

 Our goal is that no significant changes to
application code will be required

 METSIM® screen shots follow
 Many thanks to Alex Holtzapple, CEO of MSI

The Elephant in the Room: ⎕WI ?

Migrating to Dyalog
27 Spring '24

Migrating to Dyalog
28 Spring '24

Migrating to Dyalog
29 Spring '24

 APL+WIN comes with a handful of GUI
demonstration applications

Practicing

Migrating to Dyalog
30 Spring '24

My copy of APL+Win is a little dated…

Migrating to Dyalog
31 Spring '24

Now export the APL+Win code to APL Transfer Format

Migrating to Dyalog
32 Spring '24

Convert the ATF file to Dyalog Source files

Migrating to Dyalog
33 Spring '24

Migrating to Dyalog
34 Spring '24

NB this is original APL+Win Source

For METSIM®, we plan to update the
APL+Win environment to run off
text files too.

Migrating to Dyalog
35 Spring '24

]todyalog aplsource c:\devt\demodraw\dyalog a2k
Using c:\devt\demodraw\aplsource\atfmap.txt
20 files processed

Next, map code from APL+Win to Dyalog

Migrating to Dyalog
36 Spring '24

atfmap.txt

Migrating to Dyalog
37 Spring '24

Take advantage of Git and VS Code

Migrating to Dyalog
38 Spring '24

Original
APL+Win code

Converted to
Dyalog

So what is #.A2K.∆WCALL ?

Migrating to Dyalog
39 Spring '24

So what is #.A2K.∆WCALL ?

∆

Migrating to Dyalog
40 Spring '24

Migrating to Dyalog
41 Spring '24

Migrating to Dyalog
42 Spring '24

 We are reworking and enhancing the tools developed for
APLX migrations

 Will enumerate differences between APL+Win and Dyalog
 Will create emulation functions as required

 We *may* also decide to add new features to Dyalog v20
(which should start user testing in late 2024)
 For example :LeaveIf

Status

Migrating to Dyalog
43 Spring '24

 Dyalog has been contracted to port the METSIM® application
 Hired one new APL developer in January, aiming for 1 more
 We will have ~1.5-2 full time equivalent resources working on

migration tools until further notice

 All the resulting tools and documentation will be
free and open source

Status

Migrating to Dyalog
44 Spring '24

	Slide 0: Migrating to Dyalog
	Slide 1: A New Wave of Migrants
	Slide 2: Why migrate to Dyalog?
	Slide 3: Selected Features added 2006-2024
	Slide 4: Why Migrate to Dyalog?
	Slide 5: Why Migrate to Dyalog?
	Slide 6: Why Migrate to Dyalog?
	Slide 7: Remote IDE (RIDE)
	Slide 8: RIDE running in a browser
	Slide 9: Why Migrate to Dyalog?
	Slide 10: Why Migrate to Dyalog?
	Slide 11: Why Migrate to Dyalog?
	Slide 12: The Real Reason to Pick Dyalog APL
	Slide 13: HOW to Migrate to Dyalog APL
	Slide 14: From APL2
	Slide 15: Recent / Active APL2 Migrations
	Slide 16
	Slide 17
	Slide 18: From APL+Win or MicroAPL APLX
	Slide 19: APLX Migrations
	Slide 20: Recent / Active APL+Win Migrations
	Slide 21: Differences which are "easy"
	Slide 22: Other "Easy" Differences
	Slide 23: Tricky Differences
	Slide 24: The Hard Parts
	Slide 25: Component Files
	Slide 26: The Elephant in the Room: ⎕WI ?
	Slide 27
	Slide 28
	Slide 29: Practicing
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Status
	Slide 43: Status
	Slide 44

