
Seemingly impossible APL 
programs

Life is always going to be stranger 
than fiction, because fiction needs 
to be convincing, and life doesn't.

~ Neil Gaiman



Setting the stage: What is an array?

• Roger Hui and Ken Iverson:
• An array is a function from a set of indices to numbers, characters, … A 

rank-n array is one whose function f applies to n-tuples of non-
negative integers, […]

• Hence:
• Ι∞ → {Ω}
• ∞Ρ1 2 3 → {1 2 3⊃⍨3|Ω}
• 1 2 3 → {1 2 3⊃⍨ Ω}

• Nothing new: E. E. McDonnell - "Extending APL to Infinities".



Setting the stage: What is a function?

• Discrete: We can represent function as a relation:
• {Ω=5: 3 ⋄ Ω=1: 8} → ↑(5 3) (1 8)

• Continuous: If analytic, the function may have a power series.
• Power series: often represented as a vector of coefficients.
• Intuitively speaking: many functions have polynomial 

approximations. What if we made the polynomial infinitely long?

~ x⊥a¨Ι∞ Roger Hui - Bring something 
beautiful, Vector: Vol. 24, No. 4



Thought experiment.

• Imagine a hypothetical black-box apparatus scanning an 
infinitely long punched tape containing your message. If the 
code is considered appropriate, a green lamp turns on; 
otherwise, the tape is shredded.

• Objective: Craft a message that makes the machine happy.



Mathematical insight.

• The Machine is a function that, given a function that maps from 
Natural numbers to Bits, determines whether it is suitable or not 
(also returns a bit): (𝑵 → 𝑩) → 𝑩.

• Caveat: There are infinitely many possible functions 𝑵 → 𝑩! We 
can't establish equality between a function over an infinite set, 
in finite time.

Or can we?



What?

• It is impossible to establish equality between functions A → B if A
is infinite (Turing, Kleene, etc...)

• There are function types over infinite sets that admit decidable 
equality: For example, (𝑵 → 𝑩) → 𝑵.

• Topological observations:
• Finite parts of the output depend on the finite parts of input (Brouwer).
• Hence: The function is continuous.

• Star of today's show: the Cantor space - 𝑵 → 𝑩.



Ulrich Berger (1990)

data Bit = Zero | One

type Cantor = [Bit]

find :: (Cantor -> Bool) -> Cantor

forsome, forevery :: (Cantor -> Bool) -> Bool

find p = if forsome(\a -> p(Zero : a))

then Zero : find(\a -> p(Zero : a))

else One : find(\a -> p(One : a))

forsome p = p(find p)

forevery p = not(forsome(\a -> not(p a)))



How?

• Rewrite a mutually recursive call:
• find p = if p(Zero : find(\a -> p(Zero : a))

then Zero : find(\a -> p(Zero : a))
else One : find(\a -> p(One : a))

• Topological argument:
• (𝑵 → 𝑩) → 𝑵 is uniformly continuous (we also assume that it's total, i.e. 

it terminates).
• Meaning: There exist such sequences Α and Ω that there is a minimum m 

where (m↑Α)≡(m↑Ω) implies (f Α)≡(f Ω).
• m: the modulus of uniform continuity.
• m=0 implies that f and g do not depend on their arguments.
• Otherwise, the cons predicates have m one smaller.



APL - Stateless!

cantor←{
C←{(f: (Ω.f){Ω=0:ΩΩ ⋄ ΑΑ Ω-1}Α)}

}



APL - Stateless!

cantor←{
C←{(f: (Ω.f){Ω=0:ΩΩ ⋄ ΑΑ Ω-1}Α)}
F←{b←ΑΑ P 0 ⋄ ΑΑ b:b ⋄ ΑΑ P 1}

}



APL - Stateless!

cantor←{
C←{(f: (Ω.f){Ω=0:ΩΩ ⋄ ΑΑ Ω-1}Α)}
F←{b←ΑΑ P 0 ⋄ ΑΑ b:b ⋄ ΑΑ P 1}
P←{Ω C (P: P ⋄ C: C ⋄ F: F

f: (ΑΑ∘(Ω∘C){(ΑΑ F ⍬).f Ω}))}

}



APL - Stateless!

cantor←{
C←{(f: (Ω.f){Ω=0:ΩΩ ⋄ ΑΑ Ω-1}Α)}
F←{b←ΑΑ P 0 ⋄ ΑΑ b:b ⋄ ΑΑ P 1}
P←{Ω C (P: P ⋄ C: C ⋄ F: F

f: (ΑΑ∘(Ω∘C){(ΑΑ F ⍬).f Ω}))}
A←{ΑΑ(~∘ΑΑ F)Ω}

}



APL - Stateless!

cantor←{
C←{(f: (Ω.f){Ω=0:ΩΩ ⋄ ΑΑ Ω-1}Α)}
F←{b←ΑΑ P 0 ⋄ ΑΑ b:b ⋄ ΑΑ P 1}
P←{Ω C (P: P ⋄ C: C ⋄ F: F

f: (ΑΑ∘(Ω∘C){(ΑΑ F ⍬).f Ω}))}
A←{ΑΑ(~∘ΑΑ F)Ω}
(ΑΑ≡ΩΩ)A Ω

}



APL

({⊃∧/Ω.f¨1 3 5} Cantor {(Ω.f 1)∧(Ω.f 3)∧(Ω.f 6)})⍬
0

({⊃∧/Ω.f¨1 3 5} Cantor {(Ω.f 1)∧(Ω.f 3)∧(Ω.f 5)})⍬
1

({3=+/Ω.f¨⌽Ι5} Cantor {3=+/Ω.f¨Ι5})⍬
1

({3=+/Ω.f¨⌽Ι5} Cantor {3=+/Ω.f¨Ι4})⍬
0



Formal power series 101

• Here: considered independently from any notion of convergence 
and can be manipulated with the usual algebraic operations.

• Consider the following power series representing the sine and 
cosine functions. They will serve as illustratory examples



APL representation

• Take the coefficients of the powers of Ω. A power series is a dfn
𝑵 → 𝐑, i.e. a mapping from the term number to the coefficient.

• Example:

cos←{2|Ω:0
neg←2|0.5×Ω
neg:÷-!Ω ⋄ ÷!Ω}

cos¨Ι6
1 0 ¯0.5 0 0.041666667



Elementary operations

neg←{-ΑΑ Ω}
add←{(ΑΑ+ΩΩ) Ω}
sub←{(ΑΑ-ΩΩ) Ω}
const←{Ω<≢,Α:Ω⊃,Α⋄0}
cons←{Ω<≢,Α:Ω⊃,Α⋄ΑΑ Ω-≢,Α}

mul←{l←Ι1+Ω⋄+/(ΑΑ¨l)×(ΩΩ¨Ω-l)}



Reciprocals

recip←{0=ΑΑ 0:⎕SIGNAL 8
Ω=0:÷ΑΑ 0
z←1+ΙΩ
(-÷ΑΑ 0)×+/(ΑΑ¨z)×(ΑΑ ∇∇)¨Ω-z}

Consequence of 
the Faà di Bruno's 
formula.



Composition

jot←{0≠ΩΩ 0:⎕SIGNAL 8
Ω=0:ΑΑ 0
((ΩΩ 1∘+)mul((ΑΑ 1∘+)jot ΩΩ))Ω-1}

~ Douglas McIlroy, Functional Pearls



Integration and derivatives

derv←{(ΑΑ Ω+1)×Ω+1}
int←{Α←0⋄Ω=0:Α⋄(ΑΑ Ω-1)÷Ω}

(¯1∘(sin int)¨ ≡ (cos neg)¨)Ι10
1



Surprisingly compact.

exp←{÷!Ω}
log1p←{(¯1∘* int) Ω}

tan←sin div cos
.5⊥⌽tan¨Ι20

0.5463024897923674093178175472236696
3○.5

0.5463024898437905132551794657802855



Recursive definitions

my_exp←{1(my_exp int)Ω}
my_sin←{(my_cos int) Ω}
my_cos←{((1∘const) sub (my_sin int))Ω}
(cos¨Ι5) ≡ (my_cos¨Ι5)

1
(sin¨Ι5) ≡ (my_sin¨Ι5)

1
(exp¨Ι5) ≡ (my_exp¨Ι5)

1



Why?

• Many mathematical functions of particular interest can be 
written as formal power series!

• Demonstrating or proving analytic results through purely 
algebraic means.

• Elegant, instructive examples of functional programming.
• APL: A versatile language which caters to pragmatics and 

dreamers.



Thank you for your attention!

•Reach out to me! kspalaiologos@gmail.com
•My blog: https://palaiologos.rocks/
•My PGP key: C868 F0B6 DE38 409D
•Read the paper with full source code!


