Seemingly impossible APL programs

Life is always going to be stranger than fiction, because fiction needs to be convincing, and life doesn't.
~Neil Gaiman

Setting the stage: What is an array?

- Roger Hui and Ken Iverson:
- An array is a function from a set of indices to numbers, characters, ... A rank-n array is one whose function f applies to n-tuples of nonnegative integers, [...]
- Hence:

$$
\begin{aligned}
& \text { - } 2 \infty \rightarrow \text { \{ } \rightarrow \\
& \text { - } \infty \rho 123 \rightarrow\{123>\ddot{\sim} 3 \mid \omega\} \\
& \text { - } 123 \rightarrow\{123 د \ddot{\sim} \omega\}
\end{aligned}
$$

- Nothing new: E. E. McDonnell - "Extending APL to Infinities".

Setting the stage: What is a function?

- Discrete: We can represent function as a relation:
- $\{\omega=5: 3 \diamond \omega=1: 8\} \rightarrow \uparrow(5$ 3) (1 8)
- Continuous: If analytic, the function may have a power series.
- Power series: often represented as a vector of coefficients.
- Intuitively speaking: many functions have polynomial approximations. What if we made the polynomial infinitely long?

$$
\sum_{k=0}^{\infty} a_{k} x^{k} \sim \mathbf{X} \perp \mathbf{a}^{\bullet \bullet} \downarrow \infty \quad \begin{aligned}
& \text { Roger Hui - Bring something } \\
& \text { beautiful, Vector: Vol. } 24, \text { No. } 4
\end{aligned}
$$

Thought experiment.

- Imagine a hypothetical black-box apparatus scanning an infinitely long punched tape containing your message. If the code is considered appropriate, a green lamp turns on; otherwise, the tape is shredded.
- Objective: Craft a message that makes the machine happy.

Mathematical insight.

- The Machine is a function that, given a function that maps from Natural numbers to Bits, determines whether it is suitable or not (also returns a bit): $(\boldsymbol{N} \rightarrow \boldsymbol{B}) \rightarrow \boldsymbol{B}$.
- Caveat: There are infinitely many possible functions $N \rightarrow B$! We can't establish equality between a function over an infinite set, in finite time.

Or can we?

What?

- It is impossible to establish equality between functions $A \rightarrow B$ if A is infinite (Turing, Kleene, etc...)
- There are function types over infinite sets that admit decidable equality: for example, $(N \rightarrow B) \rightarrow N$.
- Topological observations:
- Finite parts of the output depend on the finite parts of input (Brouwer).
- Hence: The function is continuous.
- Star of today's show: the Cantor space - N $\rightarrow \boldsymbol{B}$.

Ulrich Berger (1990)

```
data Bit = Zero | One
type Cantor = [Bit]
find :: (Cantor -> Bool) -> Cantor
forsome, forevery :: (Cantor -> Bool) -> Bool
find p = if forsome(\a -> p(Zero : a))
    then Zero : find(\a -> p(Zero : a))
    else One : find(\a -> p(One : a))
forsome p = p(find p)
forevery p = not(forsome(\a -> not(p a)))
```


How?

- Rewrite a mutually recursive call:
- find $p=$ if $p(Z e r o$: find (\a -> $p(Z e r o: a))$ then Zero : find(\a -> p(Zero : a)) else One : find(\a -> p(One : a))
- Topological argument:
- $(\boldsymbol{N} \rightarrow \boldsymbol{B}) \rightarrow \boldsymbol{N}$ is uniformly continuous (we also assume that it's total, i.e. it terminates).
- Meaning: There exist such sequences α and ω that there is a minimum m where ($m \uparrow \alpha$) $\equiv(m \uparrow \omega$) implies ($f \alpha$) $\equiv(f \omega)$.
- m : the modulus of uniform continuity.
- $m=0$ implies that f and g do not depend on their arguments.
- Otherwise, the cons predicates have m one smaller.

APL - Stateless!

cantor $\leftarrow\{$
$C \leftarrow\{(f:(\omega . f)\{\omega=0: \omega \omega \diamond \alpha \alpha \omega-1\} \alpha)\}$
\}

APL - Stateless!

cantor $\leftarrow\{$
$C \leftarrow\{(f:(\omega . f)\{\omega=0: \omega \omega \diamond \alpha \alpha \omega-1\} \alpha)\}$

$$
F \leftarrow\{b \leftarrow \alpha \alpha P 0 \diamond \alpha \alpha b: b \diamond \alpha \alpha P 1\}
$$

\}

APL - Stateless!

```
cantor<{
    C\leftarrow{(f: (\omega.f){\omega=0:\omega\omega\diamond 人\alpha \omega-1}\alpha)}
    F\leftarrow{b\leftarrow\alpha\alphaP O\diamond\alpha\alpha b:b \diamond\alpha\alphaP 1}
    P\leftarrow{\omega C (P: P \diamond C: C \diamond F: F
        f: (\alpha\alpha\circ(\omega\circC){(\alpha\alpha F 0).f \omega}))}
```

\}

APL - Stateless!

```
cantor<{
    C\leftarrow{(f: (\omega.f){\omega=0:\omega\omega\diamond 人\alpha \omega-1}\alpha)}
    F\leftarrow{b\leftarrow\alpha\alpha P 0 \diamond \alpha\alpha b:b \diamond\alpha\alphaP 1}
    P\leftarrow{\omega C (P: P \diamond C: C \diamond F: F
        f: (\alpha\alpha\circ(\omega\circC){(\alpha\alpha F 0).f \omega}))}
    A\leftarrow{\alpha\alpha(~o\alpha\alpha F)\omega}
}
```


APL - Stateless!

```
cantor\leftarrow{
    C}\leftarrow{(f:(\omega.f){\omega=0:\omega\omega\diamond\alpha\alpha \omega-1}\alpha)
    F\leftarrow{b\leftarrow\alpha\alpha P 0\diamond\alpha\alpha b:b\diamond\alpha\alphaP 1}
    P\leftarrow{\omega C (P: P \diamond C: C \diamond F: F
        f: (\alpha\alpha\circ(\omega\circC){(\alpha\alpha F 0).f \omega}))}
    A\leftarrow{\alpha\alpha(~o\alpha\alpha F)\omega}
    (\alpha\alpha\equiv\omega\omega)A \omega
}
```

APL

$$
(\{د \wedge / \omega . f \cdot 135\} \text { Cantor }\{(\omega . f 1) \wedge(\omega . f 3) \wedge(\omega . f 6)\}) \theta
$$

0

$$
(\{\nu \wedge / \omega . f \cdots 135\} \text { Cantor }\{(\omega . f 1) \wedge(\omega . f 3) \wedge(\omega . f 5)\}) \theta
$$

1

$$
\left(\left\{3=+/ \omega \cdot f \cdot \phi_{\imath} 5\right\} \text { Cantor }\{3=+/ \omega \cdot f \ddot{f} 5\}\right) \theta
$$

1

$$
(\{3=+/ \omega \cdot f \cdot \phi \imath 5\} \text { Cantor }\{3=+/ \omega \cdot f \cdots \imath 4\}) \theta
$$

0

Formal power series 101

- Here: considered independently from any notion of convergence and can be manipulated with the usual algebraic operations.
- Consider the following power series representing the sine and cosine functions. They will serve as illustratory examples

$$
\begin{aligned}
& \cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
& \sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

APL representation

- Take the coefficients of the powers of ω. A power series is a dfn $N \rightarrow R$, i.e. a mapping from the term number to the coefficient.
- Example:

$$
\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
$$

$\cos \leftarrow\{2 \mid \omega: 0$

$$
\text { neg } \leftarrow 2 \mid 0.5 \times \omega, \quad 10-0.500 .041666667
$$

$$
\text { neg }: \div-!\omega \diamond \div!\omega\}
$$

Elementary operations

neg $\leftarrow\{-\alpha \alpha \omega\}$
$\operatorname{add} \leftarrow\{(\alpha \alpha+\omega \omega) \omega\}$
sub $\leftarrow\{(\alpha \alpha-\omega \omega) \omega\}$

$$
\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right) \cdot\left(\sum_{j=0}^{\infty} b_{j} x^{j}\right)=\sum_{k=0}^{\infty} c_{k} x^{k}
$$

const $\leftarrow\{\omega<\not \equiv, \alpha: \omega, \alpha \diamond 0\}$ cons $\leftarrow\{\omega<\neq \boldsymbol{\alpha}: \boldsymbol{\omega} \boldsymbol{\omega}, \alpha \diamond \alpha \boldsymbol{\alpha} \omega-\not \equiv, \boldsymbol{\alpha}\}^{c_{k}=} \sum_{l=0} a_{l} b_{k-l}$

$$
m u l \leftarrow\{l \leftarrow \imath 1+\omega \diamond+/(\alpha \alpha " l) \times(\omega \omega " \omega-l)\}
$$

Reciprocals

recip $\leftarrow 0=\alpha \alpha 0: \square S I G N A L 8$

$$
\omega=0: \div \alpha \alpha \quad 0
$$

$$
z \leftarrow 1+\imath \omega
$$

$$
\left.(-\div \alpha \alpha \quad 0) \times+/\left(\alpha \alpha{ }^{-} z\right) \times(\alpha \alpha \quad \nabla \nabla) " \omega-z\right\}
$$

$$
\begin{aligned}
b_{0} & =\frac{1}{a_{0}}, \\
b_{n} & =-\frac{1}{a_{0}} \sum_{i=1}^{n} a_{i} b_{n-i}, \quad n \geq 1 .
\end{aligned}
$$

Consequence of the Faà di Bruno's formula.

Composition

$$
\left.\begin{array}{rl}
\text { jot } \leftarrow & \{0 \neq \omega \omega \quad 0: \square S I G N A L \\
& \omega=0: \alpha \alpha \quad 0 \\
& \left.\left(\left(\begin{array}{ll}
\omega \omega & 1 \circ+) m u l((\alpha \alpha \\
1 \circ+
\end{array}\right) \text { jot } \omega \omega\right)\right) \omega-1
\end{array}\right\}
$$

~ Douglas McIlroy, Functional Pearls

Integration and derivatives

$\operatorname{derv} \leftarrow(\alpha \alpha \omega+1) \times \omega+1\}$ int $\leftarrow\{\alpha \leftarrow 0 \diamond \omega=0: \alpha \diamond(\alpha \alpha \omega-1) \div \omega\}$

$$
\begin{aligned}
\int_{0}^{z} \sum_{i=0}^{\infty} a_{i} x^{i} d x & =\sum_{i=0}^{\infty} a_{i} \frac{x^{i+1}}{i+1} \\
\left(-1 \circ(\sin \text { int })^{\prime}\right. & \left.\equiv(\cos \text { neg })^{*}\right) \imath 10
\end{aligned}
$$

Surprisingly compact.

$\exp +\{\div!\omega\}$
$\log 1 p \leftarrow\{(-10 *$ int $) \omega\}$
tan*sin div cos
. $5 \perp$ фtan"r 20
0.5463024897923674093178175472236696 30.5
0.5463024898437905132551794657802855

Recursive definitions

```
my_exp\leftarrow{1(my_exp int)\omega}
my_sin\leftarrow{(my_cos int) \omega}
my_cos\leftarrow{((10const) sub (my_sin int))\omega}
(cos"\imath5) \equiv (my_cos"\imath5)
1
    (sin"\imath5) \equiv(my_sin"\imath5)
1
    (exp`\imath5) \equiv(my_exp"\imath5)
1
```


Why?

- Many mathematical functions of particular interest can be written as formal power series!
- Demonstrating or proving analytic results through purely algebraic means.
- Elegant, instructive examples of functional programming.
- APL: A versatile language which caters to pragmatics and dreamers.

Thank you for your attention!
-Reach out to me! kspalaiologos@gmail.com
-My blog: https://palaiologos.rocks/

- My PGP key: C868 FOB6 DE38 409D
- Read the paper with full source code!

