
Dyalog's [Public]
Docker Containers
Morten Kromberg
CTO, Dyalog Ltd.



1

Dyalog's Docker Containers#dyalog20

Agenda
What is a Container 

Why should you want one?

Dyalog's Public Docker Containers
Starting, Using, Stopping, Debugging

Extending Dyalog's Containers
Combining Containers using 

docker-compose



2

Dyalog's Docker Containers#dyalog20

What is a "Container"?
Applications which run in a "Container" 
believe they are alone on a machine even 
though they are sharing it.

Similar to a "Virtual Machines" but does 
NOT require multiple copies of the O/S.



3

Dyalog's Docker Containers#dyalog20

Containers & Docker

http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/

The most widely used
container technology
are "docker" 
containers



4

Dyalog's Docker Containers#dyalog20

FROM ubuntu:20.04

ADD ./dyalog-unicode_18.0.39491_amd64.deb /

RUN dpkg -i /dyalog*.deb
RUN git clone https://github.com/dyalog/jarvis /jarvis

ENV CodeLocation="/code"

CMD dyalog /jarvis/distribution/jarvis.dws

"Dockerfile" (text) describes the Container

Base Image

Files to Add

Run during Build

Environment Vars

Run at Startup

This "Dockerfile" completely describes a machine which will run "myapp".(Imaginary dyalog/jarvis image)



5

Dyalog's Docker Containers#dyalog20

Linux or Windows?
Most containers run Linux

Linux is smaller – more CPU 
and memory for your 
application: Less $£€

The "Docker Engine" is available 
on Linux, macOS and Windows
Recently, "Docker for Windows" 
switch to using WSL – Windows 
Subsystem for Linux



6

Dyalog's Docker Containers#dyalog20

docker run ... Starts the Container 

docker run –it –p 8080:8080 dyalog/jarvis

dyalog/jarvis is the name of the image to start



7

Dyalog's Docker Containers#dyalog20

docker run ... allocate pseudo‐TTY
docker run –it –p 8080:8080 dyalog/jarvis

(don't ask …
but also … don't forget!)

Switch Description

-p hhhh:cccc Map TCP port cccc in container to hhhh on host
-e name=value Set environment variable inside the container
-v /hfolder:/cfolder Mount hosts /hfolder as containers /cfolder
-t Allocate a pseudo-TTY
-i Keep stdin open even if not attached
--rm Discard changes when container terminates

docker run cheat sheet



8

Dyalog's Docker Containers#dyalog20

docker run ... map TCP ports
docker run -it –p 80:8080 dyalog/jarvis

Maps port 8080 in container
to 80 in the host

By default, the container
network is completely isolated

Switch Description

-p hhhh:cccc Map TCP port cccc in container to hhhh on host
-e name=value Set environment variable inside the container
-v /hfolder:/cfolder Mount hosts /hfolder as containers /cfolder
-t Allocate a pseudo-TTY
-i Keep stdin open even if not attached
--rm Discard changes when container terminates

docker run cheat sheet



9

Dyalog's Docker Containers#dyalog20

docker run ... map TCP ports
docker run -it –p 80:8080 dyalog/jarvis

http://www.myserver.com

(web browser opens port 80,
which is mapped to 8080
in the container)

host computer: myserver.com

Container
Service listening on port 8080

8080
80



10

Dyalog's Docker Containers#dyalog20

docker run ... mount volumes
docker run -it -v /my/app/folder:/code –p 80:8080 dyalog/jarvis

Mount the host folder
/my/app/folder as /code
inside the container.

Switch Description

-p hhhh:cccc Map TCP port cccc in container to hhhh on host
-e name=value Set environment variable inside the container
-v /hfolder:/cfolder Mount hosts /hfolder as containers /cfolder
-t Allocate a pseudo-TTY
-i Keep stdin open even if not attached
--rm Discard changes when container terminates

docker run cheat sheet



11

Dyalog's Docker Containers#dyalog20

docker run ... mount volumes
docker run -it -v /my/app/folder:/code –p 80:8080 dyalog/jarvis

The host folder /my/app/folder
*is* /code inside the container.

(real-time mapping, updates
made to /code in container
persist after container stopped) host computer

Container

/code
/my/app/folder



12

Dyalog's Docker Containers#dyalog20

docker run ... set environment vars
docker run -it -v /my/app/folder:/code –p 80:8080 
-e RIDE_INIT=SERVE:*:4502 –p 4502:4502 dyalog/jarvis

Set environment variable
RIDE_INIT 
inside the container

NB: To connect to RIDE on port
4502 you MUST also
–p 4502:4502
or you will not be able to connect

Switch Description

-p hhhh:cccc Map TCP port cccc in container to hhhh on host
-e name=value Set environment variable inside the container
-v /hfolder:/cfolder Mount hosts /hfolder as containers /cfolder
-t Allocate a pseudo-TTY
-i Keep stdin open even if not attached
--rm Discard changes when container terminates

docker run cheat sheet



13

Dyalog's Docker Containers#dyalog20

Demo 1 – Start & Use dyalog/jarvis



14

Dyalog's Docker Containers#dyalog20



15

Dyalog's Docker Containers#dyalog20



16

Dyalog's Docker Containers#dyalog20



17

Dyalog's Docker Containers#dyalog20

Jarvis ‐ Sample JSON Application
By default, Jarvis serves a built-in demo application



18

Dyalog's Docker Containers#dyalog20

Demo 2 – Call Jarvis from APL



19

Dyalog's Docker Containers#dyalog20

Call Jarvis service from APL



20

Dyalog's Docker Containers#dyalog20

More details on Docker and APL

Dyalog'18 (Belfast): Cloud Computing with APL
https://dyalog.tv/Dyalog18/?v=LkXKUm9ffKA

Webinar: Microservices in Dyalog APL
https://dyalog.tv/Webinar/?v=KKJMeGAWGaE



21

Dyalog's Docker Containers#dyalog20



22

Dyalog's Docker Containers#dyalog20



23

Dyalog's Docker Containers#dyalog20

Dyalog's Public Containers
At https://hub.docker.com/u/dyalog

Image Name Description

dyalog/dyalog Minimal Linux with Dyalog APL (currently debian:buster-slim)
dyalog/jarvis dyalog/dyalog with Jarvis installed
dyalog/miserver ... with MiServer installed

dyalog/jupyter For Dyalog-backed Jupyter notebooks

dyalog/jsonserver Use dyalog/jarvis instead



24

Dyalog's Docker Containers#dyalog20



25

Dyalog's Docker Containers#dyalog20



26

Dyalog's Docker Containers#dyalog20



27

Dyalog's Docker Containers#dyalog20



28

Dyalog's Docker Containers#dyalog20

Boot Folders
Each of our public containers has a default folder which it will look for:

Image Name Description Boot Folder

dyalog/dyalog Minimal Linux with Dyalog APL /app
dyalog/jarvis dyalog/dyalog with Jarvis installed /code
dyalog/jsonserver Use dyalog/jarvis instead /code

dyalog/miserver ... with MiServer installed /misite

dyalog/jupyter For Dyalog-backed Jupyter notebooks /app

docker run -it -v /my/app/folder:/code dyalog/jarvis



29

Dyalog's Docker Containers#dyalog20

Stopping a Container
Implement some kind of ShutDown 
method in your service

The container will shut down when the initial 
process started by CMD terminates

Connect RIDE if you can and type )OFF
or ...



30

Dyalog's Docker Containers#dyalog20

(hits CTRL+BREAK)



31

Dyalog's Docker Containers#dyalog20

Tags
Images may have several tags, identifying variants
dyalog/dyalog has the following tags

latest
17.1
18.0
dotnetcore

(Will be renamed 18.0-dotnetcore, 19.0-dotnetcore)

docker run –it –e RIDE_INIT=HTTP:*:4502 
–p 4502:4502 dyalog/dyalog:17.1



32

Dyalog's Docker Containers#dyalog20



33

Dyalog's Docker Containers#dyalog20

More about Debugging
To be able to use RIDE for debugging, add
-e RIDE_INIT=SERVE:*:4502 –p 4502:4502

To use "Zero Footprint" RIDE via a browser, use HTTP 
mode:
-e RIDE_INIT=HTTP:*:4502 –p 4502:4502

Live demo time...



34

Dyalog's Docker Containers#dyalog20

Demo 3
Start APL, loading and running a function
Debug using pre-installed RIDE
Repeat using "Zero Footprint" RIDE



35

Dyalog's Docker Containers#dyalog20



36

Dyalog's Docker Containers#dyalog20



37

Dyalog's Docker Containers#dyalog20

Extending Dyalog's Containers
You can make new containers which 
extend Dyalog's containers by adding:

Your application code
Your data

... except it usually makes more sense to 
map data in at runtime



38

Dyalog's Docker Containers#dyalog20



39

Dyalog's Docker Containers#dyalog20



40

Dyalog's Docker Containers#dyalog20



41

Dyalog's Docker Containers#dyalog20

Distributing Containers
Sign up for an account at dockerhub



42

Dyalog's Docker Containers#dyalog20

Collaborating Containers
We will use to put a frontend on the 

server



43

Dyalog's Docker Containers#dyalog20

Communicating Containers
We will use qWC to put a frontend on 
the myzodiac server



44

Dyalog's Docker Containers#dyalog20



45

Dyalog's Docker Containers#dyalog20

Let's build a  Container

docker build . –t mkromberg/qwc

Dyalog APL plus some QWC folders:

Maybe someday this will be

mjhsoftware/qwc



46

Dyalog's Docker Containers#dyalog20

To start the application
Start Jarvis "backend"
docker run –it –p 8080:8080 mkromberg/myzodiac

... or use "docker-compose" ...

Start QWC frontend
docker run –it 
–v qwcuser:/qwc/User 
–v qwcconfig:/qwc/Config 
–p 1234:1234 –p 12345:12345
mkromberg/qwc



47

Dyalog's Docker Containers#dyalog20



48

Dyalog's Docker Containers#dyalog20

docker-compose up



49

Dyalog's Docker Containers#dyalog20



50

Dyalog's Docker Containers#dyalog20

Demo 4 docker‐compose up



51

Dyalog's Docker Containers#dyalog20

But instead we will use docker‐compose



52

Dyalog's Docker Containers#dyalog20

But instead we will use docker‐compose

Service names available via DNS
inside the virtual network

... but NOT from outside



53

Dyalog's Docker Containers#dyalog20

But instead we will use docker‐compose

This means the back service is available
from outside on port 8080



54

Dyalog's Docker Containers#dyalog20

But instead we will use docker‐compose

Containers restarted if they "fail"



55

Dyalog's Docker Containers#dyalog20



56

Dyalog's Docker Containers#dyalog20



57

Dyalog's Docker Containers#dyalog20

docker‐compose can also do
Load balancing by starting multiple 
copies of the same image and 
multiplexing between them
Help with continuous integration by 
pulling new versions of the images

and much more that I have not learned 
about yet



58

Dyalog's Docker Containers#dyalog20



59

Dyalog's Docker Containers#dyalog20

Relevant v19.0 Goals
Completely rework I/O handling to allow

Support RIDE without "-it" switch
RIDE improvements in multi-threaded 
server environments
Documentation for all the public dyalog 
containers
Open-source demo apps showing how to 
build secure, load balanced apps in APL



60

Dyalog's Docker Containers#dyalog20

We will publish our Dockerfiles on GitHub



61

Dyalog's Docker Containers#dyalog20

Recap: Dyalog's Public Containers
At https://hub.docker.com/u/dyalog

Image Name Description Boot Folder

dyalog/dyalog Minimal Linux with Dyalog APL /app
dyalog/jarvis dyalog/dyalog with Jarvis installed /code
dyalog/miserver ... with MiServer installed /misite

dyalog/jupyter For Dyalog-backed Jupyter notebooks /app

dyalog/jsonserver Use dyalog/jarvis instead /code



62

Dyalog's Docker Containers#dyalog20

Should we run a half‐day workshop?
Write to me if you would attend



63

Dyalog's Docker Containers#dyalog20

Visit https://dyalog.tv
Recordings of Dyalog'20 sessions will 
start to appear on Friday
Hours of material on Dyalog v18.0 
highlights
A rapidly growing collection of 
presentations on the use of APL


