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Autonomous Cars Come True
“First Autonomes Car on Public Roads”

TU Braunschweig, https:
//www.tu-braunschweig.de/presse/medien/
presseinformationen?year=2010&pinr=133

The car drives, the driver enjoys . . .

Leonie 8.10.2010
Weltweit erstes automatisches Fahren
im realen Stadtverkehr
Forschungsfahrzeug „Leonie“ fährt
automatisch auf dem Braunschweiger
Stadtring
Weltpremiere in Braunschweig: Erstmals
fährt heute ein Fahrzeug automatisch
im alltäglichen Stadtverkehr. Im Rah-
men des Forschungsprojekts „Stadtpilot“
hat die Technische Universität Braun-
schweig in ihrem Kompetenzzentrum,
dem niedersächsischen Forschungszen-
trum Fahrzeugtechnik, ein Forschungs-
fahrzeug entwickelt, dass automatisch
eine vorgegebene Strecke im regulären
Verkehr fährt.
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Analysis, Modelling and Solutions What does Artificial Intelligence Mean?
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Analysis, Modelling and Solutions What does Artificial Intelligence Mean?

(Artificial) Intelligence
Intelligence

Individual Intelligence
Intelligence of a group
Emotional Intelligence

Artificial Intelligence Alan Turing 1950: Turing Test
An engine has artificial intelligence if a human observer cannot decide
if he deals with an engine or a human being.
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Analysis, Modelling and Solutions What does Artificial Intelligence Mean?

(Artificial) Intelligence
Intelligence

Individual Intelligence
Intelligence of a group
Emotional Intelligence

Artificial Intelligence Alan Turing 1950: Turing Test
An engine has artificial intelligence if a human observer cannot decide
if he deals with an engine or a human being.

Research Objective
Analyse intelligent achievements and make these methods
computable.
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Analysis, Modelling and Solutions Problem Solving Strategies

Brain — Computer: a Comparison

Brain and standard computers
high performance w.r.t. to different tasks

Brain
Highly parallel
Fault tolerant
Pattern recognition
Generalization
Self-organizing
ca. 1011 neurons, reducing
to 107

Every neuron has ca. 104
connected neurons.

Computer

Precise
Faultless storing
Fast algorithmic
calculations
von Neumann architecture

Nearly stand alone
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Analysis, Modelling and Solutions Problem Solving Strategies

How to Solve a Problem?

Algorithm
Intuitively build a
model
Deduce a numeri-
cal algorithm

Put it into a pro-
gram
Use it respecting
the preconditions

Expert System

Intuitively build a
model
Formulate rules

Apply Rules

may solve related
problems

Neural Network

Intuitively build a
model
needs sampling
points
generalizes based
on sampling data

applies to related
problems
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Analysis, Modelling and Solutions Objectives

Physical Performance: An Engine on a Test Bench

load, throttle walve, ignition an-
gle, dwell angle, mixture, volt-
age, temperatures of engine, air
and oil

→
rotational speed, con-
sumption, temperature
and amount of emission
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Analysis, Modelling and Solutions Objectives

Physical Performance: An Engine on a Test Bench

Targets
Create the optimal engine characteristic map.
. . . also regarding start situation.
Reduce test bench time.
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Analysis, Modelling and Solutions Objectives

Mathematical Model of an Engine

f

Mathematical model: abstraction

Look at the engine as a function
Assumes functional dependencies (one-one)
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Analysis, Modelling and Solutions Objectives

Mathematical Model of an Engine

KNN

Models with artificial neural network

Artificial neural networks should learn to “behave” like an engine.
The knowledge must come from (measured) data.
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Analysis, Modelling and Solutions Objectives

Physical Performance: Mathematical Model

One-to-one relation: All influencing factors are known.

e o

f

The output ~o depends (functionally) on the input ~e. This relation is
described by a f :

~o = ~f (~e) .
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Analysis, Modelling and Solutions Objectives

Application: Reduce Test Bench Time

Optimization of characteristic maps using ANNs

KNN

e o e o

f f

Fead the neural networks with the “knowledge” of several engines:
measured data from test bench
New engine: extending the knowledge base with a few data from
test bench
Optimize the characteristic map using the trained neural network

R. Stricker, BMW AG, 1996
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Analysis, Modelling and Solutions Objectives

Curve Fitting (Least Square Method, Regression)

“Learning” only in the last layer
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Neurons and Neural Networks NeuroScience

1 Analysis, Modelling and Solutions

2 Neurons and Neural Networks
NeuroScience
Artificial Neuron, Linear Separation
Neural Network Learning
Improving Learning

3 Sabbatical Working Examples

4 Pattern Recognition

5 Neural Networks: Image and Speech Recognition

6 Conclusion
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Neurons and Neural Networks NeuroScience

The Biological Neuron

Principles of Operation
1 Impulse through the axon.
2 Synapses collect impulse.
3 Dendrites transmit it.
4 Nucleus gets impulse.
5 Overall impulse:
Excitation of the neuron.

6 Threshold target reached:
neuron sends impulse.

Learning:
Synapses, dendrites enhance their connection.
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Neurons and Neural Networks Artificial Neuron, Linear Separation

The Artificial Neuron

1 input (vector) ~e = (e1, . . . , en), −1 to be used by threshold
2 weights and threshold ~w = (w1, . . . , wn) and θ
3 net (value), propagation net = 〈~e, ~w 〉 − θ =

∑n
i=1 eiwi − θ

4 activation (primitive function), activity a = a(〈~e, ~w 〉 − θ)
5 output function
6 output o = o(a(〈~w , ~e 〉 − θ))
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Neurons and Neural Networks Artificial Neuron, Linear Separation

Weighted Threshold Units
Definition

0 ≤
( n∑

i=1
wiei

)
− b = 〈~w , ~e 〉 − b
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Neurons and Neural Networks Artificial Neuron, Linear Separation

Linearly Separable Sets
Hidden neurons separate linearly

 x
y

−1
0

 ≥
 1.5

0

−1
0

 = −1.5
 x

y

 0
−1

 ≥
 0
1.5

 0
−1

 = −1.5
 x

y

 1
1

 ≥
 3
1.5

 1
1

 = 4.5

The output neuron gathers these results using
the logical OR-function.
A positive answer (o = 1) signals that the
element belongs to the outer region (positive
region).
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Neurons and Neural Networks Artificial Neuron, Linear Separation

Boundary and Pattern Recognition
Matrix of sensors to recognize boundaries
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Neurons and Neural Networks Artificial Neuron, Linear Separation

Boundary and Pattern Recognition
Matrix of sensors to recognize symbols
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Neurons and Neural Networks Artificial Neuron, Linear Separation

Logical Functions, Pseudo Inverse

Example (AND OR XOR)

Y =


0 0 1 1
0 1 0 1
−1 −1 −1 −1

; Z =


0 0 0 1
0 1 1 1
0 1 1 0



YY T =


0 0 1 1
0 1 0 1
−1 −1 −1 −1




0 0 −1
0 1 −1
1 0 −1
1 1 −1

 =


2 1 −2
1 2 −2
−2 −2 4



W = ZY T (YY T )−1 =


0.5 0.5 0.25
0.5 0.5 −0.25
0 0 −0.5



N = (~n1, . . . , ~n4) = W · Y =


−0.25 0.25 0.25 0.75
0.25 0.75 0.75 1.25
0.50 0.50 0.50 0.50
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Neurons and Neural Networks Artificial Neuron, Linear Separation

Support Vector Machnine
Not linearly separable data:

Transformation of data

Two nested rings are not linearly separable.

1 Transformation in polar coordinates
2 Transformation in higher dimensions, e.g. Gaussian
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Neurons and Neural Networks Artificial Neuron, Linear Separation

Support Vector Machnine
Not linearly separable data: Transformation of data
Two nested rings are not linearly separable.
1 Transformation in polar coordinates
2 Transformation in higher dimensions, e.g. Gaussian

Support Vector Machines
Search for a transformation which allows a linear separation.
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Neurons and Neural Networks Neural Network Learning

Multi-Layered Feed Forward Networks
Feed forward network with topology 3-4-4-2

Learning: Change weights and threshold until the result satisfies.
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Neurons and Neural Networks Neural Network Learning

Multi-Layered Feed Forward Networks
Feed forward network with topology 3-4-4-2

rûs Bpforw ein;anzs;aus;is;net
anzsûÙÒbpanþausûnetûbpanÒ¡0þaus[1]ûÚôeinÂ¡Ú÷bpte ã Eing. trans.
isû1
DO4:ý(anzs<isûis+1)/UNDO4 ã Schleife ..uber Schichten: Ausgaben
aus[is]ûÚ1ß1+*-bpap«Ønet[is]ûÚ(isØbpbi)+[1](rØbpgw)+.«(rûis-1)ØausþýDO4
UNDO4:rûô(anzsØaus)Â¡Ú÷bpta
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Neurons and Neural Networks Neural Network Learning

Topology of a Feed-Forward Network

Theorem (Kolmogorov, 1957)
Every vector-valued function f : [0, 1]n→Rm can be written as a 3-
layer feed-forward network with n input neurons, 2n+1 hidden neurons
and m output neurons. The activation functions depend on f and n.

Remark

1 The proof shows the existence in a non-constructive way.
2 It does not give the activation functions.
3 The theorem has no direct practical impact.
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Neurons and Neural Networks Neural Network Learning

Topology of a Feed-Forward Network

Theorem (Kolmogorov, 1957)
Every vector-valued function f : [0, 1]n→Rm can be written as a 3-
layer feed-forward network with n input neurons, 2n+1 hidden neurons
and m output neurons. The activation functions depend on f and n.

Corollary
For every continuous function f : [−1, 1]n → [−1, 1] there are
functions g and gi (i = 1, . . . , 2n + 1) in one argument and
constants λj (j = 1, . . . , n) with

f (x1, . . . , xn) =
2n+1∑
i=1

g

 n∑
j=1

λjgi (xj)

 .
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Neurons and Neural Networks Neural Network Learning

Topology of a Feed-Forward Network

Theorem (Kolmogorov, 1957)
Every vector-valued function f : [0, 1]n→Rm can be written as a 3-
layer feed-forward network with n input neurons, 2n+1 hidden neurons
and m output neurons. The activation functions depend on f and n.

Theorem (Approximation with neural networks)
Every function allows an approximation by a neural network with one
hidden layer.
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Neurons and Neural Networks Neural Network Learning

Multi-Layered Feed Forward Networks

Input layer
Continuous input:
Linear transformation into [-1; 1]
Discrete input:
One neuron per value, transformed
onto -1, 1

Multi-Layer Network

Output layer using a tangential activity function

Target activities should be equally distributed in the interval
[−0.6, 0.6]!
The inverse of the output function could be:

f (x) =


[m, M] → [−0.6, 0.6]
x 7→ −0.6 + 1.2

(
x−m
M−m

)s
; s > 0
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Neurons and Neural Networks Neural Network Learning

Multi-Layered Feed Forward Networks

Input layer
Continuous input:
Linear transformation into [-1; 1]
Discrete input:
One neuron per value, transformed
onto -1, 1

Multi-Layer Network

Output layer using a logarithmic activity function

Target activities should be equally distributed in the interval
[0.2, 0.8]!
The inverse of the output function could be:

f (x) =


[m, M] → [0.2, 0.8]
x 7→ 0.2 + 0.6

(
x−m
M−m

)s
; s > 0
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Neurons and Neural Networks Neural Network Learning

Learning in Multi-Layered Networks
Target
Change the weights and thresholds in such a way that the errors in
the training data get small.
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Neurons and Neural Networks Neural Network Learning

Learning in Multi-Layered Networks
Target
Change the weights and thresholds in such a way that the errors in
the training data get small.

Calculations

error: E (~w) = 1
2

n∑
i=1
‖~zi − ~oi (w)‖2

radient: −−→grad w E (~w) =
(
∂E (~w)
∂w1

,
∂E (~w)
∂w2

, . . . ,
∂E (~w)
∂w3

)

Delta-Rule (Gradient descent)
∆~w (t) = −σ−−→grad w E (~w); ~w (t) = ~w (t−1) + ∆~w (t) + µ∆~w (t−1)

σ decreasing, z.B. von 0.9 auf 0.1, µ increasing, z.B. µ = 1− σ.
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Neurons and Neural Networks Neural Network Learning

Error Back Propagation
Step-by-step error back propagation using the net error δi :

~δi := ∂E
∂~ni

= ∂E
∂~ni+1

· ∂
~ni+1
∂~oi

· ∂
~oi
∂~ni

= ~δi+1 ·Wi+1 · A(~ni )

∂E
∂Wi ,rs

= ∂E
∂~ni
· ∂~ni
∂Wi ,rs

= ~δi · oi−1,s êr = δi ,r oi−1,s
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rûziel Bpback aus;anzs;dgwa;err;is;lr
(aus lr)ûaus
errûbpanÒ¡0
dgwaûdgw ã dgw global
isûanzsûÙÒbpan ã Anzahl Schichten
rûanzsØaus ã Fehler letzte Schicht
err[anzs]ûÚ-2«bpap«(r«1-r)«ziel-r ã Nettofehler
DO:ý(1>isûis-1)/UNDO ã B.P. ..uber alle Sch.
dgw[is]ûÚ(-(1+is)Øerr)Ê.«rûisØaus ã ÈGewicht je Schicht
â(is>1)/'err[is]ûÚbpap«(r«1-r)«(ôisØbpgw)+.«Øerr[1+is]' ã Nettofehler
ýDO
UNDO:bpgwûbpgw+lr«dgw+(1-lr)«dgwa ã Gewichte ..andern
bpbiûbpbi+(dbiû-lr«err)+(1-lr)«dbi ã Bias ..andern
rûanzsØerr ã Fehler in letzter Sch.
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Neurons and Neural Networks Neural Network Learning

Learning in Multi-Layered Networks
Levenberg-Marquardt-Method

E (~w) = 1
2

〈
~f (~w), ~f (~w)

〉
mit ~f (~w) = ~z − ~o(~w)

~0 = E ′(~w) = −−→grad E (~w) = f ′T (~w)~f (~w)
E ′′(~w) = f ′T (~w)f ′(~w) für f ′′T (~w) small!
~wk+1 = ~wk − E ′′(~w)−1E ′(~w)

∆~w = −
(

f ′T (~w)f ′(~w)
)−1

f ′T (~w)~f (~w)

System of linear equations to be solved:
f ′T (~w)f ′(~w)∆~w = −f ′T (~w)~f (~w)
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E (~w) = 1
2

〈
~f (~w), ~f (~w)

〉
mit ~f (~w) = ~z − ~o(~w)

~0 = E ′(~w) = −−→grad E (~w) = f ′T (~w)~f (~w)

E ′′(~w) =
(

f ′T (~w)~f (~w)
)′

= f ′′T (~w)~f (~w) + f ′T (~w)f ′(~w)

= f ′T (~w)f ′(~w) für f ′′T (~w) small!
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Neurons and Neural Networks Improving Learning

Evaluation of a Trained Network

Error in training data

maximal error
mean error
standard deviation

Insider

Evaluation of forecasts

Error in testing data

20%-40% of available data
maximal and mean error
standard deviation

Auto correlation

KNNKNN

e

f
o

fId
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Neurons and Neural Networks Improving Learning

Improving Learning
Reduction of input parameters
1 Weight in first layer

0 1 2 3 4 5 6 7

1

2

3

4

Input

N
eu
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n

2 Transformation to the principal axes of the covariance matrix
3 Dimensional analysis (equations with physical units only)
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Improving Learning
Reduction of input parameters
1 Weight in first layer
2 Transformation to the principal axes of the covariance matrix
3 Dimensional analysis (equations with physical units only)

u = 5
384

ql4
EI

q[FL−1], l [L], E [FL−2], I[L4] und u[L]
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3 Dimensional analysis (equations with physical units only)

u = 5
384

ql4
EI

π1 = q
El ; π2 = l4

I ; π3 = u
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Neurons and Neural Networks Improving Learning

Improving Learning
Improving quality of results
1 Decreasing learning rate, adjusted momentum

∆W (t)
i := −σ

−−→grad Wi E = −σ(~oi−1 ·~δi )T

W (t)
i = W (t−1) − σ

−−→grad WiE + µ∆W (t−1)
i

2 Learning – testing
3 “Drop out” of some neurons
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Improving Learning
Improving quality of results
1 Decreasing learning rate, adjusted momentum
2 Learning – testing Stop learning once the error in testing data
increases

1 Smoother fitting fo the curve
2 No overlearning

3 “Drop out” of some neurons
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Sabbatical Working Examples Crash-Tests

1 Analysis, Modelling and Solutions

2 Neurons and Neural Networks

3 Sabbatical Working Examples
Crash-Tests
Prediction of Accident Severity
Learning Strategy
Comfort in Cabriolet: Active Torsion Damping
Active Torsion Damping using Neural networks
Further Examples

4 Pattern Recognition

5 Neural Networks: Image and Speech Recognition

6 Conclusion
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Sabbatical Working Examples Crash-Tests

Predicting Impact on Passengers Sabbatical 1995 (with M. Holzner, R. Stricker)

Barriers

Front crash

Seitenaufprall

Front crash

Foam and honeycomb barriers
(Fa. Fritzmeier)
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Sabbatical Working Examples Crash-Tests

Predicting Impact on Passengers Sabbatical 1995 (with M. Holzner, R. Stricker)

Investigating usability of neural networks and fuzzy logic in crash
predictions.

Experimental series of crash tests 0◦, 100% overlap, E36
Target: predicting impact on passengers due to constructive changes
Problems:

No knowledge on correlations
Small amount of data sets (90)
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Sabbatical Working Examples Crash-Tests

Predicting Impact on Passengers Sabbatical 1995 (with M. Holzner, R. Stricker)

Tasks

Input parameters and their domains:
Car classification: version (doors), cylinders, gearing, adjustable
steering column?, model year
Airbag: modell year, exhaust port, ignition point, Young’s modulus,
volume, mass of explosive
Test data: place, speed, mass, dummy
Results: deformation of car, displacement of steering column

Output parameters:

Dummies (driver and co-driver): HIC, acceleration of head and chest

Evaluation of neural network:

Achievement
We could predict the results of a test.
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Tasks

Input parameters and their domains:
Output parameters:

Dummies (driver and co-driver): HIC, acceleration of head and chest
Evaluation of neural network:

80% learning and 20% testing data: Comparing standard deviation
auto correlation
Discussing forecasts of neural network with car engineers.
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Sabbatical Working Examples Prediction of Accident Severity

Accident Severity with A. Kuhn, J. Urbahn, BMW AG, 2000

t0: decision to fire airbag ...

tZ : ignition of airbag
(t1 − tZ ≈ 30ms)

t1: driver starts forward
displacement

t2: acceleration decreases

Targets
1 predict the severity of the accident
2 help deciding which action to be taken
3 protect the passengers as good as possible

Neural Networks | Dieter Kilsch | 26.11.2018 37 / 73



Sabbatical Working Examples Prediction of Accident Severity

Accident Severity with A. Kuhn, J. Urbahn, BMW AG, 2000

t0: decision to fire airbag ...

tZ : ignition of airbag
(t1 − tZ ≈ 30ms)

t1: driver starts forward
displacement

t2: acceleration decreases

Targets
1 predict the severity of the accident
2 help deciding which action to be taken
3 protect the passengers as good as possible

Neural Networks | Dieter Kilsch | 26.11.2018 37 / 73



Sabbatical Working Examples Prediction of Accident Severity

Targets of the Project

Accident severity: possible
parameters

1 (mean) velocity of passengers (time,
forward displacement)

2 mean acceleration of passengers

Data base
Data from parameter variations with
Monte-Carlo method:
1 variation of relevant parameters and

testing mode
2 FEM simulations using PamCrash
3 150 - 300 data sets for every 14 models

Data from some real crash tests

Made possible by

more computer power!
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Sabbatical Working Examples Prediction of Accident Severity

Using the Power of Neural Networks

3- or 4-layer networks
Input

accelerations, velocities, dis-
placements
maximal and mean values

Output
1 velocity
2 mean acceleration

(impact to passengers)

Learning:
activation function: tangential, piecewise parabola
learning method: gradient descent, Levenberg-Marquardt
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Sabbatical Working Examples Learning Strategy

Training the Networks: Learning Strategy

random choice of 60% learning, 40% testing data
stop training when the error in testing data increases

Mean learning error
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Sabbatical Working Examples Learning Strategy

Training the Networks: Influence of the Input

random choice of 60% learning, 40% testing data
stop training when the error in testing data increases

Mean learning error
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Sabbatical Working Examples Learning Strategy

Optimization

Statistics on the number of neurons (1 - 2 hidden layers)
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Standardabweichungen:  µ(σ(fehler)) ± σ(σ(fehler))
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Testdaten
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Korrelationen:  µ cor(a,z) ± σ cor(a,z)

Lerndaten
Testdaten

Graphs:
σ(σ(oi − zi ))
correlation

Expectation:
σ(σ) gets smaller
up to saturation.
error in learning
data only a bit
better than testing
data
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Sabbatical Working Examples Learning Strategy

Results

Models

1 FEM simulation data gives a good data base.
2 Usable topologies: e.g.: 4-15-8-1, 4-33-1
3 Usable parameter: mean acceleration
4 Usable input:
mean accelerations and velocities

σ2-method allows:

to choose a network of an appropriate size.
to judge on the quality of the data.
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Sabbatical Working Examples Comfort in Cabriolet: Active Torsion Damping

Active Damping of Torsion with Ch. Hornung, G. Pflanz, BMW AG, 2005

Problem of a Cabrio: lack of torsion stiffness Mx/dy

Limousine: 100 % Cabrio 7.3%
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Sabbatical Working Examples Comfort in Cabriolet: Active Torsion Damping

Origin of Unwanted Vibration

Vibration

Car vibration mainly caused by
wheel resonance,

⇒ Vibration is transmitted by joints
through the axes and spring strut,

⇒ Vibration is observed by passen-
gers.
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Sabbatical Working Examples Active Torsion Damping using Neural networks

Active Damping: Actuators Produce Counter-Displacement

Sensors and Actuators

Sensors realize a disturbance
Actuators produce opposite displacement

⇒ No displacement at the windscreen panel
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Sabbatical Working Examples Active Torsion Damping using Neural networks

Training

and Results

Models
One or all velocities
Time series up to 500 ms
Combination of accelerations

Training of the neural
networks

At least 40% data for testing
Gradient descent,
Levenberg-Marquardt
Termination:
errors in testing data increase

Good results
time series ca. 200 ms ,
2 and 4 input signals,
both training methods
small networks ⇒ strongly
linear behaviour of car body and
actuator
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Sabbatical Working Examples Active Torsion Damping using Neural networks

Validation

Validation

Integration of trained network into a simulink-model
Neural network gives slightly better results than a linear control
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Sabbatical Working Examples Further Examples

Prediction of Power Consumption EWR, DA Th. Müller, 2005
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Sabbatical Working Examples Further Examples

Prediction of Sales Figures of Bread

E
in

fl
u

s
s

p
a

r.

E
in

fl
u

s
s

p
a

r.

Usable predictions only based on correct data!
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Sabbatical Working Examples Further Examples

Prediction of Student Drop Out TH Bingen (HSP III), 2017/18

Success

Study

Neural Networks | Dieter Kilsch | 26.11.2018 50 / 73



Sabbatical Working Examples Further Examples

Examples

Controlling vehicles and robots
Neural Network controls a vehi-
cle or robot. It is trained „on the
job“.

Insolvency Detection
Based on annual reports a fore-
cast on the risque of insolvency is
given.

Forecast of share value
Forecast based on previous share
values and economic data of the
company.
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Sabbatical Working Examples Further Examples

Examples

Chemical reactivity
Prediction of its reactivity from
quantitative properties of a bond-
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Examples

Chemical reactivity
Prediction of its reactivity from
quantitative properties of a bond-
ing.

Olfaktometer
Micro crystal system with six dif-
ferent piezo-electric crystal sen-
sors: A neural network learns to
recognize flavours.

Structure of a protein
Conclusion from the primary
structure of a protein to its
secondary spacial structure.
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Breaking torque
Determining the breaking torque
from hydraulic pressure and veloc-
ity.

Neural stetoscope
A neural networks interprets the
noise coming through a stetho-
scope and provides a diagnoses of
a heart problem.

Olfaktometer
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sors: A neural network learns to
recognize flavours.

Neural Networks | Dieter Kilsch | 26.11.2018 51 / 73



Pattern Recognition Kohonen Feature Maps: TSP

1 Analysis, Modelling and Solutions

2 Neurons and Neural Networks

3 Sabbatical Working Examples

4 Pattern Recognition
Kohonen Feature Maps: TSP
Counterpropagation
Hierarchical Classification

5 Neural Networks: Image and Speech Recognition

6 Conclusion
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Pattern Recognition Kohonen Feature Maps: TSP

Kohonen Feature Maps

Our brain
organizes itself,
maps a sensation field onto the cortex,
builds a map of sensation areas.

Transformation into a network architecture
An input changes the weights such that the Kohonen feature map
learns the topological structure of the task and maps it.

Structure
Input layer
Topological layer: Every neuron has a fixed position.
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Pattern Recognition Kohonen Feature Maps: TSP

Kohonen Feature Maps

Topology

Learning strategy

1 “Winner takes all”
2 Neurons in its neighbourhood
update weights (decreasing
radius)
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Pattern Recognition Kohonen Feature Maps: TSP

Kohonen Feature Maps: Learning Strategy

Learning algorithm

1 Shrinking radius of neighbourhood: σ(t) := σ
t/tmax
min · σ1−

t/tmaxmax

2 Decreasing learning rate: ε(t) := ε
t/tmax
min · ε1−

t/tmaxmax

3 Weights change in neuron i closed zu winner j (d(i , j) ≤ σ(t)):
wik(t + 1) = wik(t) + ε(t) · e−d(i , j)2/2σ(t)2 ·(ek − ~wik(t))

4 At the end of learning:
Every input value will be identified sensation center.
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Pattern Recognition Kohonen Feature Maps: TSP

Kohonen Feature Maps

Initialization
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Pattern Recognition Kohonen Feature Maps: TSP

Schach6, Platine2
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Pattern Recognition Counterpropagation

Counterpropagation Network

Topology

Learning strategy

1 “Winner takes all”
2 Neurons in its neighbourhood up-
date weights (decreasing radius)
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Pattern Recognition Hierarchical Classification

Hierarchical Classification
Refining pattern recognition
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Neural Networks: Image and Speech Recognition Big Data and Deep Learning

1 Analysis, Modelling and Solutions

2 Neurons and Neural Networks

3 Sabbatical Working Examples

4 Pattern Recognition

5 Neural Networks: Image and Speech Recognition
Big Data and Deep Learning
Recurrent Neural Networks
Convolutional neural networks

6 Conclusion
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Neural Networks: Image and Speech Recognition Big Data and Deep Learning

Big Data and Deep Learning
The amount of data is huge

images, sound, ultrasonic sound, laser - and radar signals
videos of traffic situations, real and simulated
glyphs and hand writing
learning – productive situation

... and learning is deep

Neural networks with million of neurons an billions of connections
(weights)
GPUs (graphical processing unit)
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Neural Networks: Image and Speech Recognition Big Data and Deep Learning

Big Data and Deep Learning
... and learning is deep

Neural networks with million of neurons an billions of connections
(weights)
GPUs (graphical processing unit)

Hierarchical Feed forward network
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Neural Networks: Image and Speech Recognition Recurrent Neural Networks

Long Short Term Memory (Recurrent Network)

c© Guillaume Chevalier (Creative Commons)

1 State and output of each
neuron is stored.

2 State may be changed or
deleted.

3 State controls output.

This allows a temporary
memory.
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Neural Networks: Image and Speech Recognition Recurrent Neural Networks

Long Short Term Memory (Recurrent Network)

Success of complete LSTM

1 since 2003: Recognition of speech and glyphs
2 2007: Recognition of key words
3 Winner of competitions:

2009: Recognition of French handwriting
2014: Recognition of arabic handwriting
...

4 Farsi, Chinese
5 Further Recognition of key words
6 Speech recognition with LSTM: newest version of google voice
7 Description of video clips
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Neural Networks: Image and Speech Recognition Recurrent Neural Networks

Long Short Term Memory (Recurrent Network)

Google, 2014: Zu Bildern beschreibenden Text hinzufügen: Bild in Vinyals,

Toshev, et al., “Show and Tell: Lessons Learned from the 2015 MSCOCO Image Captioning Challenge”, S. 659 ..
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Neural Networks: Image and Speech Recognition Convolutional neural networks

Hierarchical Neural Network (Convolutional NN)

c© Aphex34 (Creative Commons)

1 Analyse parts of the image: recognise boundaries
2 Evaluate results: take most reasonable features
3 Analyse some features: recognise patterns
4 Evaluate results: take most reasonable pattern
5 Recognise situation (complete neural network)
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Neural Networks: Image and Speech Recognition Convolutional neural networks

Big Data and Deep Learning

Very large CNN (convolutional neural network)

Parts of the network recognise different features in parallel sections
Features are gathered and used for further learning
Bild in ..
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Neural Networks: Image and Speech Recognition Convolutional neural networks

Big Data and Deep Learning

Very large CNN (convolutional neural network)

Parts of the network recognise different features in parallel sections
Features are gathered and used for further learning

Success of CNNs
2009: Highly improving speech recognition (Yann LeCun, Geoffrey Hinton,
George Dahl; Toronto)
2012: ImageNet competition: After training with on million images, the NN
must recognise the situation of the image: Dropping error rate: 25% ↓ 15%
2013: All competitors use this method.
2013: Merck: Who has a program which predicts the impact of 30 000 small
molecules on 15 target molekules.

Winner: George Dahl using CNN, better by 15%.
Since then new areas of applications:

recognition of languages, translation, weather forecast
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Neural Networks: Image and Speech Recognition Convolutional neural networks

Uber-Accident
Autonomous Uber-car overlooks bicyclist 18.3.2018

1 Bicyclist crosses a road at night.
2 The car does not take her into account.
3 The driver realizes this situation too late.
4 The bicyclist dies in hospital.

Official responses

Uber pays a compensation to the family of the victim.
The governor of Arizona stops all licenses of all autonomous Uber
cars.
Nvidia stops all tests with its autonomous cars..

The Information 7.5.2018
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Neural Networks: Image and Speech Recognition Convolutional neural networks

Uber-Accident
Autonomous Uber-car overlooks bicyclist 18.3.2018

Official responses

The Information 7.5.2018
Uber has determined that the likely cause ... was a problem with the software
that decides how the car should react to objects it detects, according to two
people briefed about the matter.
The car’s sensors detected the pedestrian, who was crossing the street with
a bicycle, but Uber’s software decided it didn’t need to react right away.
That’s a result of how the software was tuned. Like other autonomous vehicle
systems, Uber’s software has the ability to ignore “false positives”, or objects
in its path that wouldn’t actually be a problem for the vehicle, such as a plastic
bag floating over a road. In this case, Uber executives believe the company’s
system was tuned so that it reacted less to such objects. But the tuning went
too far, and the car didn’t react fast enough, one of these people said.
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Conclusion

Conclusion

Neuronal networks are able to

learn and store know how of a system,
map functional dependencies

using a smooth or balancing interpolation between sampling points.
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Conclusion

Conclusion

Big neural networks learn to recognise

1 hand writing,
2 speech,
3 situations and actions,
4 ...

They are able to support human beings in many areas!
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Conclusion

Thank you for listening to my talk!
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Zur Vertiefung

Filme

1 Schmidhuber: Künstliche Intelligenz wird alles ändern
2 von Hugo: Autonomes Fahren – Mehr als nur ein Hype. (IAA 2017
Future Talk)

3 Helmig: HERE HD Live Map für vernetzte Smart Cars
4 Khoi Nguyen: AI detectives are cracking open the black box of deep
learning
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