
Matching under inequality via sorting
algorithms

Dr. Markos Mitsos∗
Deutsche Krankenversicherung AG DKV - ERGO

Actuarial Department

January 8, 2017

Abstract

The solution of many problems encountered while processing data with
APL depends on matching algorithms. This is taken to mean that data
points are searched in a reference list; the found matches are noted and
used subsequently. In the case of vectors basic APL provides the necessary
primitive to conduct the search via Index Of as in

IND � REF Ι DAT.

The more general case where (rows of) matrices are to be matched can
be tackled through enclosing rows.1 This solution though leads to very
slow processing. Instead a sorting algorithm can be used. (In fact some
algorithm underlies Ι itself as well. . .)

This paper discusses the generalization of the problem to different
kinds of matching under inequality. In one case a possible solution with
the help of “special sorting” algorithm is proposed. For the latter the APL
primitive Grade Up K cannot be used.

A big part of the article discusses simple examples or provides the
motivation to examine matching problems in a more general setting. This
parts could be used in a presentation and may of course be skipped by the
expert. We try to use APL code which is basically dialect independent
but uses control structures for legibility.

Contents
1 Matching under equality via sorting algorithms in APL 3

1.1 The problem of matching rows of matrices 3
1.2 Solutions via APL primitives . 4
1.3 Solution with sorting algorithm . 4
1.4 Match on equality as a example for sorting algorithms 5
∗markos.mitsos@ergo.de
1In newer version of Dyalog APL however the primitive Ι has been enhanced to encompass

the case of matrices.

1

2 Matching with “final” inequality 5
2.1 Cases where a match is not an equality 5
2.2 A sorting algorithm as solution . 6
2.3 Strict inequality . 7
2.4 Other relations . 7

3 Matching with “initial” inequality 8
3.1 Cases with initial inequality . 8
3.2 The first type of match on initial inequality 9
3.3 A different type of match on initial inequality 10
3.4 A practically not very important match type 11
3.5 A match problematic on the APL side 12
3.6 Some remarks on matches and their different types 13

4 Matching on set equality and relation 13
4.1 Setting . 13
4.2 Matches in general . 14
4.3 Definition of some interesting types of match 14
4.4 Analysis of the different types of match 16

4.4.1 Comparison and true inclusions 16
4.4.2 False inclusions . 17
4.4.3 “Commutativity” of relations 17

4.5 Disjoint dissections . 18

5 Algorithms for two kinds of match 18
5.1 A sorting algorithm for strong local matches 18

5.1.1 Description . 18
5.1.2 Algorithm . 19
5.1.3 Proof of correctness . 20

5.2 A sorting algorithm for strong global matches 21
5.2.1 Introduction . 21
5.2.2 Algorithm . 21
5.2.3 Proof of correctness . 23
5.2.4 An alternative approach . 23

6 Tentative algorithms for problematic matches 24
6.1 A tentative sorting algorithm for weak local matches 24

6.1.1 Introduction . 24
6.1.2 Algorithm with a gap . 24

6.2 Correctness of algorithm . 26
6.2.1 Prerequisites for correctness 26
6.2.2 Proof of correctness . 27

6.3 Special sort algorithm with scaffold 28
6.3.1 Basic facts about sort algorithms 28
6.3.2 A false special sort algorithm 29
6.3.3 A modification of (Natural) Merge Sort as special sort . . 29
6.3.4 Modified proof of correctness 30

6.4 Implementation of the special sort with scaffold 31
6.4.1 Special sort in APL . 31
6.4.2 Special sort in .Net . 32

2

6.5 A sorting algorithm for weak global matches 34
6.5.1 Outline of a possible algorithm 34
6.5.2 Outline of implementation of trivial case in APL 35
6.5.3 Discussion of the problem 35
6.5.4 A possibly suboptimal circumvention 36

List of Algorithms

1.4 match on equality 5
2.2 match on final inequality ≤ 6
2.3 match on final inequality < 7
2.4 match on final inequality ≥ 7
2.4 match on final inequality > 7
3.2 example of match on initial inequality 9
3.4 example of match on two ≤-inequalities 11
5.1 strong local match 18
5.2 strong global match 21
6.1 weak local match 24
6.4 special sort in APL 31
6.4 special sort in .Net 31

1 Matching under equality via sorting algorithms
in APL

This (first) section is an introduction. The presented problems and algorithms
are only intended as examples and a motivation for more complex cases.

1.1 The problem of matching rows of matrices
We want to match data, denoted by DAT, with a reference list, denoted by REF,
in APL. We are interested in the case of matrices with the same number of
columns (possibly one) and will always assume that DAT and REF are such.

We want to find the first occurrence of each row of DAT in REF (meaning the
first identical row). We are only interested in an effective and fast method to
solve the problem in case at least one of the matrices is big (at the very least
some tens of thousands of rows) and the other at least medium sized (at the
very least some hundreds of rows).

That fore we ignore the general case of arbitrary depth and assume the
matrices are simple. We can then further assume that they are numeric (for
example by replacing alphanumerical data with their Unicode code).

In fact in most cases we will only be interested in integers. Of course the
discussed algorithms can be generalized to other data types.

3

1.2 Solutions via APL primitives
There are of course many possible solutions to the problem using APL primi-
tives. For example the “monster comparison”

IND � (Ι 1 � ΡREF) ×[2] DAT ^.= IREF (1)

returns all matches and can be used the find the first one. It is of course not of
much practical use.

Just the same enclosing the matrices along the second axis will deliver the
desired result via

IND � (�[2] REF) Ι (�[2] DAT) . (2)

However enclosing big matrices is not very effective and/or fast (although the
process has been constantly improved in subsequent versions of many APL di-
alects). Furthermore the used primitive Index Of may not (depending on the
used APL dialect) be optimized for this special kind of data.

Newer versions of Dyalog APL are a special case. Here the APL primitive Ι
has been enhanced to encompass the case of matrices. As far as publicly known
this is done by hashing each row and by this means reducing the problem to
ordinary numerical vectors.

1.3 Solution with sorting algorithm
The problem with expression (1) is that it compares all provided pairs of rows
(from the data and the reference respectively). Effective ways to compare only
“necessary” pairs are encoded in the well known sort algorithms. The APL
primitive K (of course!) uses those.

A possible solution to the problem can be created along the following lines.

1. Catenate the two matrices while keeping track of the origin of each row.

2. Sort the result.

3. Split the result into (disjoint) groups of identical rows.

4. Choose the first element of REF from each group as a match for all elements
of DAT in the same group.

The main part of the work is the sort. The principle of sorting and then
grouping can also used to solve many other problems. The algorithm should not
depend on the sort being stable.2 To achieve this some additional information
(like the row numbers of the two matrices) may be used.

2In most APL dialects the Grade Up primitive K seems to implement a stable sort. There
does not seem however to exist a direct warranty for this in the language references! On the
other hand the APL Standard demands stable sorting, so any APL dialect adhering to the
Standard must provide it.

4

1.4 Match on equality as a example for sorting algorithms
We write down one possible implementation of the algorithm outlined. A similar
function that also takes care of cases a little more general works very well with
matrices with significantly more than one million rows.

The algorithm selects the first row of each group (of rows). It must therefore
ensure that this is “the right one”, namely the first row of REF fulfilling the
necessary criteria. (In absence of such a match a dummy must be used.) This
is achieved through the selected sort.

The version we give is not necessarily always the fastest but is easy to read.
The construction of the sort vector takes up up to 75% of the total runtime (for
random data) and is build in a way that does not assume that K is stable.

Algorithm “match on equality”

IND � (1 � ΡDAT) Ρ (NO_MATCH � 1 + 1 � ΡREF)
] result is 4 byte integer

MAT � REF ,[1] DAT] catenate
ROW � Ι 1 � ΡMAT] member numbers

V � K MAT , ROW] sorting vector
MAT � MAT[V;]] sort matrix
ROW � ROW[V]] sort member numbers

BEG_I � 1 , (/ (1 �[1] MAT) ` (¯1 �[1] MAT)] inequality?

DAT_I � NO_MATCH d ROW] mark data

V � BEG_I / Ι 1 � ΡMAT] begin of each group
MAT_NR � (1 � V , (1 + 1 � ΡMAT)) - V] members per group

IND[(1 - NO_MATCH) + DAT_I / ROW]
� DAT_I / MAT_NR / NO_MATCH
 BEG_I / ROW

] member number of first match in reference

2 Matching with one, “final” inequality via sort-
ing algorithms in APL

This section presents a problem that cannot be solved through enclosing (as
in expression (2) of section 1). The sorting algorithm “match on equality” of
subsection 1.4 however can be modified and used for this purpose. The necessary
sort is done by the Grade Up APL primitive K.

2.1 Cases where a match is not an equality
In many cases the desired match cannot be expected to be an exact one. The
most common example in German health insurance is “begin business time”. Let
us consider premiums or annuity values for a certain plan.

5

The plan has been recalculated on certain dates ri ∈ R, i ∈ {1, . . . , l}. Each
person j, j ∈ {1, . . . ,m} in this plan has contracted at a certain date dj . At the
time of contract the valid annuities where those with the highest date before or
at contract.

The equality is possible but not probable. For each person j the subset

R(dj) = {r = rmax(dj)} ⊂R , rmax(dj) =max{r; r ≤ dj},

defines the desired matches.
In this section we will consider problems with a series of matches on equality

followed by one last (and therefore “final”) match on inequality, more specific on
the condition “less or equal”. For example those could be one or more criteria
defining a plan (like plan name and sex) followed be business time.

On the APL side the first columns of our matrices are to be matched on
equality (=) whereas the last one is to be matched on “less or equal” (≤).

2.2 A sorting algorithm as solution
We can still use a (lexicographic) sort to find the desired match. Sorting the
leading columns and grouping them is obviously necessary. Sorting additionally
the last column brings the data in the right succession.

The grouping however from subsection subsection 1.4 has to be modified.
Different dates belong to separate groups exactly when they come from the
reference list. All subsequent data point dates with the same leading columns
and up to the next reference date belong to the same group regardless of their
value.

In our algorithm ”match on equality” we just replace

BEG_I � 1 , (/ (1 �[1] MAT) ` (¯1 �[1] MAT)] inequality?

and obtain the following.

Algorithm “match on final inequality ≤”

...
V � K MAT , ROW] sorting vector
...
BEG_I � 1 , (/ (1 �[1] V) ` (¯1 �[1] (V � ¯1 �[2] MAT))

] inequality in leading columns?
I � (1 � V) ` (¯1 � (V � , ¯1 �[2] MAT))

] inequality in final column?
REF_I � NO_MATCH > ROW

] mark references
BEG_I � BEG_I ((1 , I ^ 1 � REF_I)

] final inequalities count at reference only
...

The sort is unchanged and only given for better comparison with the follow-
ing subsections.

6

2.3 Strict inequality
In some cases a strict inequality may be needed. To obtain a match where the
last property (column) is defined by a subset like

Rj = {ri = rmax(dj)} ⊂R , rmax(dj) =max{ri; ri < dj},

the same technique may be used.
The only necessary change to the algorithm ”match on equality” additionally

to the one used to obtain the algorithm ”match on final inequality ≤” are

• to replace

V � K MAT , ROW] sorting vector

with a sort that puts elements of the reference after those of the data if
all columns are identical and

• to recognize a reference preceded by an identical data point as a group
begin.

One possible (though not the most effective) solution is the following.

Algorithm “match on final inequality <”

...
V � K MAT , (NO_MATCH > ROW) ,[1.5] ROW] sorting vector
...
BEG_I � 1 , (/ (1 �[1] V) ` (¯1 �[1] (V � ¯1 �[2] MAT))

] inequality in leading columns?
I � (1 � V) ` (¯1 � (V � , ¯1 �[2] MAT))

] inequality in final column?
REF_I � NO_MATCH > ROW] mark references
BEG_I � BEG_I ((1 , (I ^ 1 � REF_I)

(((1 � REF_I) ^ (¯1 � ~ REF_I)))
] final inequalities count at reference only,

final equalities if after data and at reference
...

We emphasize that the algorithm works in that form only for the special case
of one, final inequality discussed here.

2.4 Other relations
To complete the discussion on matching with one, final inequality we work out
the conditions “greater or equal” and “greater”. Those problems are complements
to the ones discussed in subsections 2.2 and 2.3.

They can be tracked either by reversing the sort (using sort down through
R) or by using the last element of each group. We use the first option to get
algorithms that are as easily comparable as possible.

We obtain the following by replacing the sort in the algorithm ”match on
final inequality ≤”.

7

Algorithm “match on final inequality ≥”

...
V � R MAT , (-ROW)] sorting vector
...
BEG_I � 1 , (/ (1 �[1] V) ` (¯1 �[1] (V � ¯1 �[2] MAT))

] inequality in leading columns?
I � (1 � V) ` (¯1 � (V � , ¯1 �[2] MAT))

] inequality in final column?
REF_I � NO_MATCH > ROW

] mark references
BEG_I � BEG_I ((1 , I ^ 1 � REF_I)

] final inequalities count at reference only
...

Similarly we obtain the following by replacing the sort in the algorithm
”match on final inequality <”.

Algorithm “match on final inequality >”

...
V � R MAT , (NO_MATCH d ROW) ,[1.5] (-ROW)] sorting vector
...
BEG_I � 1 , (/ (1 �[1] V) ` (¯1 �[1] (V � ¯1 �[2] MAT))

] inequality in leading columns?
I � (1 � V) ` (¯1 � (V � , ¯1 �[2] MAT))

] inequality in final column?
REF_I � NO_MATCH > ROW

] mark references
BEG_I � BEG_I ((1 , (I ^ 1 � REF_I)

(((1 � REF_I) ^ (¯1 � ~ REF_I)))
] final inequalities count at reference only,

final equalities if after data and at reference
...

We have created four very similar algorithms to find matches on four in-
equalities. The whole burden of the solutions rests on the strong shoulders of
the brave Grade Up and Grade Down sort primitives K and R!

3 Matching with “initial” inequality
This section modifies the problem of section 2 and discusses different kinds of
matching in a simple setting. The sorting algorithm “match on equality” of
subsection 1.4 can mostly still be used as the basis of a solution. In one case
however the limits of the normal sort are reached.

3.1 Cases with initial inequality
In some cases the first property of the desired match cannot be expected to be
an exact one. The most common example in German health insurance is the

8

business time of a “premium capping scheme”. It is not important what the
latter exactly is. The point of interest is, that on certain dates r(1)i a capping
scheme is devised as a global property for all plans.

Each capping scheme contains instructions for some, but not all, plans. To
answer the question “are the premiums of person j to be capped at time d(1)j ”
the (last) valid capping scheme has to be found and analysed. Should it contain
instructions for the plans of the person they are to be used. Otherwise no
capping is done.

Mathematically speaking our reference list is a set R of (distinct) pairs
r = (r(1), r(2)) of business times and plans. For a person j with plan d

(2)
j

at business time d(1)j we are interested in the subset R(dj) defined as

r(1)max(dj) =max{r(1); r = (r(1), r(2)) ∈R and r(1) ≤ d(1)j },

R(dj) = {r; r(1) = r(1)max(dj) and r(2) = d
(2)
j } ⊂R.

In this section we will consider problems with one first (and therefore “ini-
tial”) match on inequality, more specific on the condition “less or equal”, followed
by one match on some relation.

On the APL side the first column of our matrices is to be matched on “less or
equal” (≤) whereas the second (and last) one is to be matched on some relation
(= or ≤).

3.2 The first type of match on initial inequality
We start with a match of the type we just described. We want to use a sorting
algorithm. There does not seem to exist a single sort that would allow us to
subsequently group the rows as necessary.

To see this consider REF � 2 2 Ρ 1 1 2 0 and DAT � 3 2 Ρ 3 1 4 0
5 1. We expect no match for the first and third row of the data, the result
should be IND � 3 2 3. Neither a sort after the first column, the second one
or a combination of both delivers the right groups.

Without a formal proof of correctness we give a solution based on the al-
gorithm “match on final inequality ≤” but equipped with a loop through the
columns. It is relatively clear that it produces the desired result.

Algorithm “example of match on initial inequality”

IND � (1 � ΡDAT) Ρ (NO_MATCH � 1 + 1 � ΡREF)
] result is 4 byte integer

MAT � REF ,[1] DAT] catenate
ROW � Ι 1 � ΡMAT] member numbers

V � K MAT , ROW] first sorting vector
MAT � MAT[V;]] sort matrix
ROW � ROW[V]] sort member numbers

I � (1 � V) ` (¯1 � (V � MAT[;1]))] inequality in first column?
REF_I � NO_MATCH > ROW] mark references

9

BEG_I � 1 , I ^ 1 � REF_I
] inequalities count at reference only

V � K (+ \ BEG_I) , MAT[;,2] , ROW] second sorting vector
MAT � MAT[V;]] sort matrix
ROW � ROW[V]] sort member numbers

] BEG_I needs no sorting

I � (1 � V) ` (¯1 � (V � MAT[;2]))
] inequality in second column?

BEG_I � BEG_I (1 , I
] all inequalities count

DAT_I � NO_MATCH d ROW] mark data

V � BEG_I / Ι 1 � ΡMAT] begin of each group
MAT_NR � (1 � V , (1 + 1 � ΡMAT)) - V] members per group

IND[(1 - NO_MATCH) + DAT_I / ROW]
� DAT_I / MAT_NR / NO_MATCH
 BEG_I / ROW

] member number of first match in reference

3.3 A different type of match on initial inequality
At the beginning of the section we have described some actuarial data (capping
schemes) and its interpretation. However a second interpretation is possible.
For a person j with plan d(2)j at business time d(1)j we could instead first build
the subset

R0 = {r; r(1) ≤ d(1)j and r(2) = d(2)j } ⊂R (3)

and based on that select

r(1)max(dj) =max{r(1); r = (r(1), r(2)) ∈R0 and r(1) ≤ d(1)j },

R(dj) = {r; r(1) = r(1)max(dj) and r(2) = d
(2)
j } ⊂R0.

The resulting matches are not the ones obtained before. In the example
R = {(1,1), (2,0)} and D = {(3,1), (4,0), (5,1)} there is now a match for all
data points, namely (1,1) for the first and third. The procedure does not expect
or respect “holes” in data for subsequent business dates.

There is one important technical reason to use this interpretation of “match”.
For one data point it allows a very effective implementation as (static) SQL3,
something like

SELECT BUS_TIME, PLAN
FROM CAPPING_SCHEMES
WHERE BUS_TIME <= #B_T AND PLAN = #P

3More precisely the statement delivers an unambiguous result if there is only one match
in the reference. Normally the data model will guarantee this. If not, the assumption that
ORDER BY is stable must be added to achieve uniqueness.

10

ORDER BY BUS_TIME DESC, PLAN ASC
FETCH FIRST 1 ROWS ONLY

In this (very) special case we can switch the columns and use the algorithm
“match on final inequality ≤” on the APL side to obtain the same result. This
simple example also shows that data modelling must take such questions as the
“right” order of the columns and the desired kind of match into account — but
that should be self-evident.

3.4 A practically not very important match type
We introduce another match type. It has no obvious practical applications for
actuarial simulations in German health insurance, but it puts the two types we
already encountered in perspective. It imposes a stronger condition on matches
— and will surely have some application!

We consider a very common setting. There are some properties (like insur-
ance number, plan et cetera) that define each policy of a person. Each of them
“lives” in system as well as in business time (in the language of DB2 bi-temporal
tables).

We ignore the first properties and try to match a (single) bi-temporal data
point d = (d(1), d(2)), D = {d}, with a (single, whole) policy as reference list R.
As the subset of matches we define

r(k)max(d) =max{r(k); r = (r(1), r(2)) ∈R and r(k) ≤ d(k)} , k = 1,2,

R(d) = {r; r(1) = r(1)max(d) and r(2) = r(2)max(d)} ⊂R.

This may not seem “right” (and is probably not the common interpretation
of system and business time!), but mathematically it is as sound as the other
types of match on inequality we discussed. . .

On the APL side we can find (each) r(k)max(d) through a search for a match on
one column. Because the additional requirement to find the first match defines
a unique r for each d we can then search and match (r(k)max(d))k on equality. We
can use an algorithm like the following.

Algorithm “example of match on two ≤-inequalities”

IND � (1 � ΡDAT) Ρ (NO_MATCH � 1 + 1 � ΡREF)
] result is 4 byte integer

MAT � REF ,[1] DAT] catenate
ROW � Ι 1 � ΡMAT] member numbers

MATCH_I � (1 � ΡDAT) Ρ 1] all data points may have matches

:FOR COL :IN Ι 1 � ΡMAT
MATP � MAT[;COL]] relevant column

V � K MATP ,[1.5] ROW] sorting vector
MATP � MATP[V]] sort column

11

ROWP � ROW [V]] sort member numbers

I � (1 � MATP) ` (¯1 � MATP)] inequality?
REF_I � NO_MATCH > ROWP] mark references
BEG_I � 1 , I ^ 1 � REF_I

] inequalities count at reference only

DAT_I � NO_MATCH d ROWP] mark data

V � BEG_I / Ι ΡMATP] begin of each group
MAT_NR � (1 � V , (1 + ΡMATP)) - V] members per group

MAT[DAT_I / ROWP ; COL] � DAT_I / MAT_NR / BEG_I / MATP
] replace data with extremal values

V � (1 - NO_MATCH) + DAT_I / ROWP
] member numbers of data points

I � NO_MATCH > DAT_I / MAT_NR / NO_MATCH
 BEG_I / ROWP
] extremal value found?

MATCH_I[V] � MATCH_I[V] ^ I
] may still find match?

:ENDFOR

V � K MAT , ROW] final sorting vector
MAT � MAT[V;]] sort matrix
ROW � ROW[V]] sort member numbers

BEG_I � 1 , (/ (1 �[1] MAT) ` (¯1 �[1] MAT)
] all inequalities count

DAT_I � NO_MATCH d ROW] mark data

V � BEG_I / Ι 1 � ΡMAT] begin of each group
MAT_NR � (1 � V , (1 + 1 � ΡMAT)) - V] members per group

IND[(1 - NO_MATCH) + MATCH_I / DAT_I / ROW]
� MATCH_I / DAT_I / MAT_NR / NO_MATCH
 BEG_I / ROW

] member number of first match in reference

3.5 A match problematic on the APL side
Now we consider the bi-temporal setting of subsection 3.4 but with a match of
the type discussed in subsection 3.3. This is probably a common way to handle
such tables.4

We consider a trivial reference list with two elements, R = {(1,1), (2,3)}
and the single data point D = {(3,2)}. The desired match is the first element
of the reference list.

If we catenate the two sets APL side the result is (lexicographically) sorted.
There is no obvious sort that would make our grouping algorithm work. An APL

4Except of course if they are bi-temporal DB2 tables in the specific technical meaning of
IBM, in which case they are completely system handled!

12

algorithm could of course first try to find out which rows fulfil the necessary
inequalities (those that define the analog of subset R0 in definition (3)).

The answer however depends on the data point. It is not obvious how an
effective and fast algorithm could be build around this idea in APL.

3.6 Some remarks on matches and their different types
The standard matches (only on equality) are much easier than the ones contain-
ing inequalities. The predicative conditions on the columns may be examined
one after another in an arbitrary order (commutativity). The may also be ex-
amined simultaneously.

When inequalities are required not only is the sequence in which they are
examined important but also the type of the match used. We have encountered
three match types. In each case there must be an explicit agreement on what
data model is used — the data itself does not provide the necessary information.

On the APL side we have a similar situation. Each inequality brings more
problems and makes the necessary algorithms (much) more complicated and
slow. In subsection 3.5 we encountered a setting with no obvious APL solution.

Finding matches can be a goal itself. It can however also form the kernel of
many other algorithms. In particular matches on inequality may be very useful
even if the reference has keys defined in bounded intervals. It can be very useful
to match the lower bound on inequality ≤ and then compare the data point with
the upper bound — always assuming of course that the reference is overlap free!

4 Matching on set equality and relation
This section generalizes and formalizes the matching problem. It defines and
discusses different kinds of matching on set equality and relation. It is shown
that each matching problem corresponds to a disjoint dissection of the direct
sum of reference and data list.

4.1 Setting
Let S0 be a set (taken to mean “with distinct elements”) equipped with a relation
< under which it is completely ordered. One may think of this base set S0 being
Z or R. In fact we are mainly interested in their special subsets that are
presentable on a digital computer.

We are interested in finite groups S of elements of Sn0 , n ≥ 1. We equip S
with the set equality = (in particular it may contain identical elements) and use
<,≤, > and ≥ in the obvious way for each coordinate s(k) of each s ∈ S.

In particular the quotient S/ = is a set. We (try to) use “group”, “subgroup”
and “(group) member” when we refer to S and its members (!). In contrast we
use “set”, “subset” and “(set) element” when we refer to equivalence classes of
members or elements of Sn0 .

We fix a “dimension” n, select two corresponding groups and call the one
“reference”, denoted by R, and the other “data”, denoted by D. We number the
members of R = {r1, . . . , ri, . . . , rl}, l = ∣R∣, in an arbitrary but fixed way. This
is done in order to achieve unique matches (to give the phrase “the first match”
meaning).

13

4.2 Matches in general
We fix a vector ↭= (↭(k))k ∈ {=,<,≤,>,≥}n, of relations on R, D and M =
R⊕D. We use

mi ↭mi′ ∶⇔ m
(k)
i ↭(k) m(k)i′ for all k = 1, . . . , n,

for members ofM.
Associating pro forma the relation = with the order of < (for this relation

“sort” is taken to mean “usual ascending sort”) and extending naturally we define
a corresponding lexicographic relation and order on (R, D and)M. We use

mi ↭lex mi′ ∶⇔ m
(k)
i ↭(k) m(k)i′ for k =min{k′;m(k

′
)

i ≠m(k
′
)

i′ },

for elements ofM.
Of course the defined relations cannot distinguish identical members

mi =mi′ ⇒ mi ↭mi′ , mi ↭lex mi′ , mi′ ↭mi and mi′ ↭lex mi

For each member d ∈ D we seek “the first match” r ∈R. More specifically we
consider three types of match. In all cases we define filtered groups of members
with the last one, RT (d), containing exactly the matches for d. Those of course
obey all relations with respect to d

R ⊇RT0 (d) ⊇RT1 (d) ⊇ ⋯ ⊇RTn (d) =RT (d)
RT (d) ⊆R↭(d) = {r ∈R; r↭ d}

More specifically RT (d) contains at most one element of Sn0 (all contained
members are identical). In all cases we select ri ∈ RT (d) with i = min{i′; ri′ ∈
RT (d)} as the desired (first) match and denote it by its number i. In case
RT (d) = ∅ is empty we define i = 1 + ∣R∣.

4.3 Definition of some interesting types of match
The types of match that interest us are the following. With extr{∗} we mean
the obvious “extremal” value (=, min, max) under the relevant relation. A match
is “weak” when it is sought only under references fulfilling a starting condition,
“strong” otherwise.

In some cases the extremal values are “global” and may that fore be defined
simultaneously whereas in others they are “local” and may not. Note that in
all cases the filtered subgroups are defined successively, although in the case of
global extrema the final subgroup can be defined directly. The selection of “the
first match” is a possible add on in all cases.

weak local We start with Rwk,loc0 (d) = R↭(d) and define successively for k =
1, . . . , n

r
(k)
extr(d) = extr{r(k); r ∈Rwk,lock−1 and r(k) ↭(k) d(k)},

Rwk,lock (d) = {r ∈Rwk,lock−1 ; r(k) = r(k)extr(d)} ⊂R
wk,loc
k−1 .

14

strong local We start with Rstr,loc0 (d) = R and define successively for k =
1, . . . , n

r
(k)
extr(d) = extr{r(k); r ∈Rstr,lock−1 and r(k) ↭(k) d(k)},

Rstr,lock (d) = {r ∈Rstr,lock−1 ; r(k) = r(k)extr(d)} ⊂R
str,loc
k−1 .

weak global We start with Rwk,gl0 (d) = R↭(d) and define successively for
k = 1, . . . , n

r
(k)
extr(d) = extr{r(k); r ∈R↭(d) and r(k) ↭(k) d(k)} = extr{r(k); r ∈R↭(d)},

Rwk,glk (d) = {r ∈Rwk,glk−1 ; r(k) = r(k)extr(d)} ⊂R
wk,gl
k−1 .

strong global We start with Rstr,gl0 (d) = R and define successively for k =
1, . . . , n

r
(k)
extr(d) = extr{r(k); r ∈R and r(k) ↭(k) d(k)},

Rstr,glk (d) = {r ∈Rstr,glk−1 ; r(k) = r(k)extr(d)} ⊂R
str,gl
k−1 .

The weak local match is also “lexicographic” because, apart from the obvious
condition imposed by the relation ↭, it involves only a lexicographic sort. For
each (but only one!) d the match5 may be found with a SQL statement of the
form

SELECT FIELD1, FIELD2, ..., FIELDN
FROM TABLE
WHERE FIELD1 <= #D1
AND FIELD2 = #D2
...
AND FIELDn >= #Dn
ORDER BY FIELD1 DESC, FIELD2 DESC, ..., FIELDn ASC
FETCH FIRST 1 ROWS ONLY

As a filler we have used ↭= (≤,=, . . . ,≥) in the statement. We could of course
have used “FIELD2 ASC” in the ORDER BY clause as well.

The strong local match is better suited to a non-technical setting. It assumes
that there are some properties ordered after descending importance. Each one
defines the subgroup (in a meaningful real world setting probably a subset. . .)
of values relevant for the rest.

If all properties are “hole-less”, meaning that each key used in the k-th posi-
tion of one combination of keys appears at the k-th position of some combination
of keys for all combinations of keys without their k-th position, then the differ-
ence with weak local matches disappears.

5More precisely the statement delivers a member of the subgroup of matches. Normally
the data model will guarantee that there is exactly one such member. If not, the assumption
that ORDER BY is stable must be added if we want to get the same member each time.

15

4.4 Analysis of the different types of match
4.4.1 Comparison and true inclusions

As already mentioned, groups of matches are either one element sets or empty
because extremal values are unique. Let now d ∈ D be arbitrary but fixed.

If there exists r ∈ Rstr,gl(d) all its coordinates are global extremal values.
That fore they are also extremal in every subgroup. Furthermore r ∈ R↭(d)
holds. It follows that r ∈Rwk,loc0 (d) ∩Rstr,loc0 (d) also holds.

Inductively r ∈ Rwk,lock (d) ∩ Rstr,lock (d) holds for each k. It follows that
r is also an member of Rwk,loc(d) and Rstr,loc(d). That fore Rstr,gl(d) ⊂
Rwk,loc(d) ∩Rstr,loc(d) holds.

Now let r ∈ Rstr,loc(d) exist. In particular r ∈ R↭(d) holds. Because r(1)

is globally extremal it is also with respect to Rwk,loc0 (d) = R↭(d) and so r ∈
Rwk,loc1 (d) also holds.

Inductively the same argument can be used and r ∈Rwk,lock (d) holds for each
k. It follows that r is also an member of Rwk,loc(d). That fore Rstr,loc(d) ⊂
Rwk,loc(d) holds.

Now let r ∈Rstr,gl(d) (again) exist. In particular r ∈R↭(d) holds. Because
each r(k) is globally extremal it is also with respect to Rwk,gl0 (d) = R↭(d) and
so r ∈Rwk,gl(d) also holds.

Finally let r ∈Rwk,gl(d) exist. As each r(k) is globally extremal with respect
to Rwk,loc0 (d) =R↭(d) it is also with respect to Rwk,lock (d) and so r ∈Rwk,loc(d)
also holds.

For each d ∈ D have established

Rwk,loc(d) ⊇Rstr,loc(d) ⊇Rstr,gl(d)
Rwk,loc(d) ⊇Rwk,gl(d) ⊇Rstr,gl(d).

Now let T and T ′ be two different types of match, d ∈ D arbitrary but fix
with a match of both types, RT (d) ≠ ∅ and RT ′(d) ≠ ∅. We recall the fact that
RT (d) ∩RT ′(d) ⊆R↭(d) and use it repeatedly.

If RT0 (d) = RT
′

0 (d) then of course the extremal values rT,(1)extr (d) = r
T ′,(1)
extr (d)

are equal. Else let rT,(1)extr (d)↭ r
T ′,(1)
extr (d) hold. But then there exists r ∈R↭(d)

with r(1) = rT
′,(1)

extr (d) (by defintion ofRT ′(d)) and r(1) ↭ r
T,(1)
extr (d) (by definition

of R↭(d)), so rT
′,(1)

extr (d)↭ r
T,(1)
extr (d) and that fore rT,(1)extr (d) = r

T ′,(1)
extr (d) follows.

Now let rT,(k
′
)

extr (d) = r
T ′,(k′)
extr (d) hold for all k′ = 1, . . . , k − 1. Similarly to the

case k = 1 we can find an r ∈R↭(d) with

r(k
′
) = rT,(k

′
)

extr (d) = r
T ′,(k′)
extr (d) , for all k′ < k

r(k) = rT
′,(k)

extr (d)
r(k) ↭ r

T,(k)
extr (d)

so rT
′,(k)

extr (d)↭ r
T,(k)
extr (d) and then rT,(k)extr (d) = r

T ′,(k)
extr (d) follow.

For each d ∈ D and each pair T and T ′ of match types we have established

RT (d) ≠ ∅ and RT
′

(d) ≠ ∅ ⇒ RT (d) =RT
′

(d).

16

4.4.2 False inclusions

Evidently neither the inverse nor additional inclusions are true. Some abso-
lutely trivial examples are the following:

• R = {(1,1), (2,3)}, d = (3,2) and ↭= (≤,≤). Here Rwk,loc(d) = {(1,1)}
whereas Rstr,loc(d) = ∅.

• R = {(3,0), (0,3)}, d = (4,4) and ↭= (≤,≤). Here Rstr,loc(d) = {(3,0)}
whereas Rstr,gl(d) = ∅.

• R = {(1,2), (2,1)}, d = (3,2) and ↭= (≤,≤). Here Rwk,loc(d) = {(2,1)}
whereas Rwk,gl(d) = ∅.

• R = {(3,0), (5,3)}, d = (4,4) and ↭= (≤,≤). Here Rwk,gl(d) = {(3,0)}
whereas Rstr,gl(d) = ∅.

• R = {(1,1), (2,3)}, d = (3,2) and ↭= (≤,≤). Here Rwk,gl(d) = {(1,1)}
whereas Rstr,loc(d) = ∅.

• R = {(1,2), (2,1)}, d = (3,2) and ↭= (≤,≤). Here Rstr,loc(d) = {(2,1)}
whereas Rwk,gl(d) = ∅.

4.4.3 “Commutativity” of relations

We now analyse what happens if we work through k ∈ {1, . . . , n} in an order
different than the natural one. Do the resulting matches RT (d) stay the same?
In some cases the order of the coordinates is important and in others not.

weak local The definition of Rwk,loc0 (d) = R↭(d) does not use the order of
the coordinates. Moreover (if not empty) all its members have the same
r(k) for each k with ↭(k) an equality. Therefore the corresponding ex-
tremal values are fixed and equalities may be processed in an arbitrary
order before all inequalities. This freedom includes the process of building
Rwk,loc0 (d) itself.
On the other hand the trivial example R = {(3,2), (4,4)}, d = (3,4) and
↭= (=,≤) shows that it is not possible to completely process the inequali-
ties (including during the building of Rwk,loc0 (d)) first, because this would
give Rwk,loc(d) = ∅, whereas Rwk,loc(d) = {(3,2)} is the correct answer.
Of course once Rwk,loc0 (d) has been build equalities may also be processed
after inequalities.

Furthermore the example R = {(0,3), (3,0)}, d = (4,4) and ↭= (≤,≤)
shows that it is not possible to process inequalities in an arbitrary order,
because a switch would give Rwk,loc(d) = {(0,3)}, whereas Rwk,loc(d) =
{(3,0)} is the correct answer.

strong local The examples R = {(3,2), (4,4)}, d = (3,4) and ↭= (=,≤) as
well as R = {(0,3), (3,0)}, d = (4,4) and ↭= (≤,≤) we just used for weak
local matches also show that it is neither possible to switch equalities
and inequalities nor to process inequalities in an arbitrary order when
searching strong local matches.

17

weak global The definition of Rwk,gl0 (d) = R↭(d) does not use the order of
the coordinates. Furthermore the extremal values are defined as global
ones on Rwk,gl0 (d). They are thus of course independent of each other.
Therefore Rwk,gl(d) is completely independent of the order in which the
coordinates are processed.

strong global The extremal values are defined as global ones. They are thus
of course independent of each other. Therefore Rstr,gl(d) is completely
independent of the order in which the coordinates are processed.

4.5 Disjoint dissections
Now we consider two members d, d′ ∈ D and their associated filtered groups
RTk (d) and RTk (d′). For k = 1, and then inductively for all k, d and d′ are
associated either with the same extremal value or not. As a result eitherRTk (d) =
RTk (d′) or RTk (d) ∩RTk (d′) = ∅ holds.

If d = d′ then of course the first is the case. We get disjoint dissections of
D = ⊍DTi and R = ⊍RTi of data points and associated matches. Of course
there are subgroups DTi associated with ∅ as well as subgroups RTi without
“interested” data points. The dissections are also disjoint dissections of the
underlying sets.

Let as apply the result to the direct sum M = D ⊕R. We have created a
disjoint dissection ofM = ⊍MT

i such that the matches of each d ∈MT
i ∩D are

to be found inMT
i ∩R (as long as there are any).

The created dissection is (as already remarked in subsection 3.6) useful even
if the reference values are not given as begin or end points but rather as intervals.
The dissection finds (of course assuming that the correct data model is used. . .)
the (only) potentially right interval using only one end and avoiding Cartesian
products. The other end of the interval can then be easily used to check if the
match is the desired (or else there is no match).

5 Algorithms for two kinds of match
In this section sorting algorithms to find strong (local and global) matches are
given. Additionally possible implementations in APL are presented.

5.1 A sorting algorithm for strong local matches
5.1.1 Description

We now reproduce the dissection of the direct sumM for strong local matches
introduced in section 4 (in particular subsection 4.3) via a sorting algorithm
than can be implemented in APL. As a “base dissection” we useM =M(0)

1 and
create filtered dissectionsM = ⊍M(k)

i . In a last step we find the (index of the)
first match (for each d ∈ D).

In the APL algorithm we write down we use both ascending and descending
sorting (through APL primitives). We try however to avoid a rather high run-
time penalty for highly non-trivial sorting and much data shuffling. To achieve
this some additional information must be processed.

18

It is of course possible (and faster) to use only ascending sorting. The
presented code is however easier to read. It is also much easier to verify its
correctness (the fact that it delivers the desired strong local matches).

5.1.2 Algorithm

The variables REF and DAT are matrices and represent of course R and D re-
spectively, REL is an alphanumeric vector and stands for the relation ↭. We
assume S0 = Z, so that K respects the natural relation <. For S0 = R the com-
parison tolerance must possibly be set to 0, alphanumeric data can be processed
similarly.

Algorithm “strong local match”

IND � (1 � ΡDAT) Ρ (NO_MATCH � 1 + 1 � ΡREF)
] result is 4 byte integer

MAT � REF ,[1] DAT] catenate
ROW � Ι 1 � ΡMAT] member numbers

BEG_I � 1 , ((¯1 + 1 � ΡMAT) Ρ 0)] start with one group

:FOR COL :IN Ι 1 � ΡMAT
GR_NR � + \ BEG_I] group number
REF_I � NO_MATCH > ROW] mark references
:SELECT REL[COL]] build next sorting vector
:CASE ’=’

V � K GR_NR , MAT[;COL] , (~REF_I) ,[1.5] ROW
:CASE ’d’

V � K GR_NR , MAT[;COL] , (~REF_I) ,[1.5] ROW
:CASE ’<’

V � K GR_NR , MAT[;COL] , REF_I ,[1.5] ROW
:CASE ’e’

V � R (-GR_NR) , MAT[;COL] , REF_I ,[1.5] (-ROW)
:CASE ’>’

V � R (-GR_NR) , MAT[;COL] , (~REF_I) ,[1.5] (-ROW)
:ENDSELECT
MAT � MAT[V;]] sort matrix
ROW � ROW[V]] sort member numbers

] BEG_I needs no sorting

I � (1 � V) ` (¯1 � (V � MAT[;COL]))] inequality?
:SELECT REL[COL]

] further dissect each subgroup
:CASE ’=’

BEG_I � BEG_I ((1 , I)
] all inequalities count

:CASELIST ’de’
REF_I � NO_MATCH > ROW
BEG_I � BEG_I ((1 , I ^ 1 � REF_I)

19

] inequalities count at reference only
:CASELIST ’<>’

REF_I � NO_MATCH > ROW
BEG_I � BEG_I ((1 , (I ^ 1 � REF_I)

(((1 � REF_I) ^ (¯1 � ~ REF_I)))
] inequalities count at reference only,

equalities if after data and at reference
:ENDSELECT

:ENDFOR

V � K (+ \ BEG_I) ,[1.5] ROW
] ensure sort up and leading reference members

MAT � MAT[V;]] sort matrix
ROW � ROW[V]] sort member numbers

DAT_I � NO_MATCH d ROW] mark data

V � BEG_I / Ι 1 � ΡMAT] begin of each group
MAT_NR � (1 � V , (1 + 1 � ΡMAT)) - V] members per group

IND[(1 - NO_MATCH) + DAT_I / ROW]
� DAT_I / MAT_NR / NO_MATCH
 BEG_I / ROW

] member number of first match in reference

5.1.3 Proof of correctness

In the main part of the algorithm the subgroups are created as defined in sub-
section 4.3. To achieve this the data is processed column-wise. It is sorted
using:

GR_NR This part ensures that already defined subgroups are not teared apart
and get not moved around. This also means, that BEG_I needs not to be
sorted or reset, even if members in the subgroup get reshuffled.

MAT[;COL] This is the data proper. It is clear that it is necessary and sufficient
to sort it in order to respect the relevant relations.

REF_I The marking of reference points ensures the desired behaviour whenever
the column data proper is equal (meaning in particular that references and
data points are indistinguishable in this column). In some of the cases the
necessary information is also encoded in ROW and the variable could have
been omitted.

ROW The use of the original member numbers (coded as rows in APL) guarantees
that the sort is stable even if the algorithm underlying the primitive is not.
This ensures that the first match lands at the beginning of its subgroup.

Then the already constructed subgroups are further dissected. A case by
case analysis makes clear that the algorithm works:

= In this case each inequality defines a new group as it should be. Reference
points come before equal data points due to the sorting used.

20

≤ The maximum is unique (for each data point). That fore unequal reference
points define new subgroups. Not so for data points, as long as they point
to the same maximal reference value. The sorting ensures that reference
points come before equal data points.

< In contrast to ≤ data points must come before equal reference points, so
they are preceded (only) by strictly smaller references. Additionally the
transition between equal data and reference points must define a new
subgroup.

≥ Analog to ≤.

> Analog to <.

So it is clear that the correct subgroups are created. The last part selects the
first member of each group and uses it to define the first match of each d ∈ D.
To achieve this it ensures that reference points precede equal data points and
uses the number of members per subgroup.

5.2 A sorting algorithm for strong global matches
5.2.1 Introduction

We now reproduce the dissection of the direct sumM for strong global matches
introduced in section 4 (in particular subsection 4.3) via a sorting algorithm
than can be implemented in APL. As a “base dissection” we useM =M(0)

1 .
We do not follow the definition of the dissection strictly but instead re-

place data points for inequalities with extremal values coordinate-wise. Based
on those new values we seek matches on equality and directly create the final
dissectionM = ⊍M(n)

i and find the (index of the) first match (for each d ∈ D).
For the necessity of this last step consider R = {(3,0), (0,3), (3,3)}, D =

{(4,4)} and ↭= (≤,≤). The search for the maximal value yields matches at the
first (as well as the third) and second (as well as the third) member respectively.
The desired overall match however is the third member (even more Rstr,gl(d) =
(3,3) contains only this one member).

It should be clear that the overall process is equivalent to the definition of
strong global matches. We only sort data up (via K). This means that when
replacing values under the relations ≥ or > be must use last members of groups
(instead of first ones).

5.2.2 Algorithm

As in subsection 5.1 the variables REF and DAT represent R and D respectively
and REL stands for the relation ↭. The remarks about Z, R and alphanumeric
data hold.

Algorithm “strong global match”

IND � (1 � ΡDAT) Ρ (NO_MATCH � 1 + 1 � ΡREF)
] result is 4 byte integer

MAT � REF ,[1] DAT] catenate

21

ROW � Ι 1 � ΡMAT] member numbers

MATCH_I � (1 � ΡDAT) Ρ 1] all data points may have matches

:FOR COL :IN (’=’ ` REL) / Ι 1 � ΡMAT
] find extremal values at inequalities
MATP � MAT[;COL]] relevant column

REF_I � NO_MATCH > ROW] mark references
:SELECT REL[COL]] build next sorting vector
:CASELIST ’d>’

V � K MATP , (~REF_I) ,[1.5] ROW
:CASELIST ’<e’

V � K MATP , REF_I ,[1.5] ROW
:ENDSELECT
MATP � MATP[V]] sort column
ROWP � ROW [V]] sort member numbers

I � (1 � MATP) ` (¯1 � MATP)] inequality?
REF_I � NO_MATCH > ROWP] mark references
:SELECT REL[COL]] dissect on one inequality
:CASE ’d’

GR_I � 1 , (I ^ 1 � REF_I)
] inequalities count at reference only

:CASE ’<’
GR_I � 1 , ((I ^ 1 � REF_I)

(((1 � REF_I) ^ (¯1 � ~ REF_I)))
] inequalities count at reference only,

equalities if after data and at reference
:CASE ’e’

GR_I � (I ^ ¯1 � REF_I) , 1
] inequalities count at reference only

:CASE ’>’
GR_I � ((I ^ ¯1 � REF_I)

(((1 � ~ REF_I) ^ (¯1 � REF_I))) , 1
] inequalities count at reference only,

equalities if after reference and at data
:ENDSELECT

DAT_I � NO_MATCH d ROWP] mark data

V � GR_I / Ι ΡMATP] begin or end of each group
:SELECT REL[COL]] members per group
:CASELIST ’d<’

MAT_NR � (1 � V , (1 + ΡMATP)) - V
:CASELIST ’e>’

MAT_NR � V - (0 , ¯1 � V)
:ENDSELECT

22

MAT[DAT_I / ROWP ; COL] � DAT_I / MAT_NR / GR_I / MATP
] replace data with extremal values

V � (1 - NO_MATCH) + DAT_I / ROWP
] member numbers of data points

I � NO_MATCH > DAT_I / MAT_NR / NO_MATCH
 GR_I / ROWP
] extremal value found?

MATCH_I[V] � MATCH_I[V] ^ I
] may still find match?

:ENDFOR

V � K MAT , ROW] final sorting vector
MAT � MAT[V;]] sort matrix
ROW � ROW[V]] sort member numbers

BEG_I � 1 , (/ (1 �[1] MAT) ` (¯1 �[1] MAT)
] all inequalities count

DAT_I � NO_MATCH d ROW] mark data

V � BEG_I / Ι 1 � ΡMAT] begin of each group
MAT_NR � (1 � V , (1 + 1 � ΡMAT)) - V] members per group

IND[(1 - NO_MATCH) + MATCH_I / DAT_I / ROW]
� MATCH_I / DAT_I / MAT_NR / NO_MATCH
 BEG_I / ROW

] member number of first match in reference

5.2.3 Proof of correctness

There is not much to prove. One must only think each case (relation) through
and make sure that the sort and the following definition of subgroups are the
right ones for finding the wanted extremal value. We refer to subsection 5.1 for
details.

The last step is to define the (final) dissection. More precisely the dissection
on equalities must be further divided. At this point it is important to be sure
that (all) references come either before or after (all) corresponding data points.
That fore a mix of sort up and down must be used in the main part. The use
of ROW ensures that our matches are first ones.

5.2.4 An alternative approach

There is another possible approach to a solution. It uses the fact, proven in
subsection 4.4, that matches, as far as they exists, do not depend on their type.
That fore we can try to find Rstr,gl(d) starting with Rstr,loc(d).

The algorithm ”strong local match” presented in subsection 5.1 sorts refer-
ence and data in such a way, that the disjoint dissection necessary for strong
local matches is created. Let d ∈ D be arbitrary but fix. It is contained in a
subgroupM(d).

If and only if there exists a r ∈ R ∩M(d) there is a strong local match
(Rstr,loc(d) ≠ ∅). Without loss of generality we assume that r is the first

23

match. Because of Rstr,loc(d) ⊇Rstr,gl(d) this is necessary but not sufficient for
the existence of a strong global match (Rstr,gl(d) ≠ ∅).

We indicate the potential for a match as 1str,gl0 (d). For each coordinate we
successively examine if r(k) is also globally extremal. If not then there exists no
match. In formulas

1
str,gl
k (d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if k = 0 and Rloc,gl(d) ≠ ∅
1
str,gl
k−1 (d) if k ≥ 1 and

r(k) = extr{(r′)(k); r′ ∈R and (r′)(k) ↭(k) d(k)}
0 else

If and only if 1str,gln (d) is true there exists a strong global match (Rstr,gl(d) ≠
∅) and (then) r is the first match. We used a particular order to check the
conditions of extremality but it is obviously arbitrary and not relevant for the
end result. Furthermore each sort can clearly be applied to an arbitrary ordering
ofM.

A possible algorithmic implementation in APL is obviously to use the algo-
rithm ”strong local match” with an additional sort for each column k as an add
on. The latter is used to determine if r(k) is globally extremal with respect to d.
However the presented algorithm ”strong global match” is surely less circuitous
and more efficient.

6 Tentative algorithms for problematic matches
This section outlines sorting algorithms for weak (local and global) matches.
There is however no obvious way to implement them effectively using APL
primitives. “Special sorts” are proposed as a solution to the problem.

6.1 A tentative sorting algorithm for weak local matches
6.1.1 Introduction

We now want to reproduce the dissection of M for weak local matches via a
sorting algorithm than can be implemented in APL. As a “base dissection” we
useM =M(0)

1 .
We want to follow the definition of the dissection. To achieve this we want

to use a “special sort” of the groupM to enforce that all d ∈ D which have the
necessary relation to a specific r ∈R (including extremality) and only those fol-
low this r (directly). This given it is trivial to directly create the final dissection
M = ⊍M(n)

i .
It should be clear that the overall process is equivalent to the definition of

weak local matches. What is unclear is how to sort the data using the APL
primitives K and R.

6.1.2 Algorithm with a gap

As in subsection 5.1 the variables REF and DAT represent R and D respectively
and REL stands for the relation ↭. The remarks about Z, R and alphanumeric
data hold.

24

We use the obvious fact (see also subsection 4.4) that equalities may be tested
at the beginning of the algorithm. The intermediate dissection thus created is
only a technical trick to separate those and has not much in common with the
ones in the definition of the match.

We write SPEC_SORT as a place holder for a special type of sort. It uses a
boolean flag vector in addition to the data proper. The algorithm sorts data in
a way that all but creates the desired final dissection (all members are correctly
“positioned” and only the beginning of each group must be determined).

To do this it must ensure that (all) references come either before or after (all)
corresponding data points. That fore sort up and down may both by needed.
Note that the resulting order of each sort is the basis of the next one but the
subgroups corresponding to each sort are not and cannot be used subsequently.

Algorithm “weak local match”

IND � (1 � ΡDAT) Ρ (NO_MATCH � 1 + 1 � ΡREF)
] result is 4 byte integer

MAT � REF ,[1] DAT] catenate
ROW � Ι 1 � ΡMAT] member numbers

COL_EQ � (I � ’=’ = REL) / (V � Ι ΡREL)] separate equalities
COL_INEQ � (I � ~I) / V] and inequalities

V � (2 / 1 ¯1) [’d<e>’ Ι I / REL]] sign
REF_I � NO_MATCH > ROW] mark references
V � K MAT[;COL_EQ] , (V ×[2] MAT[;COL_INEQ])

, (~REF_I) ,[1.5] ROW
] preparatory sort, ensure lexicographic order

MAT � MAT[V;]] sort matrix
ROW � ROW[V]] sort member numbers

BEG_I � 1 , (/ (1 �[1] V) ` (¯1 �[1] (V � MAT[;COL_EQ]))
] inequality?

GR_NR � + \ BEG_I] dissect at equalities

:FOR COL :IN COL_INEQ
REF_I � NO_MATCH > ROW] mark references
:SELECT REL[COL]] build next sorting vector
:CASE ’d’

V � SPEC_SORT ((GR_NR , MAT[;COL] , (~REF_I)
,[1.5] ROW) REF_I ’Up’)

:CASE ’<’
V � SPEC_SORT ((GR_NR , MAT[;COL] , REF_I

,[1.5] ROW) REF_I ’Up’)
:CASE ’e’

V � SPEC_SORT (((-GR_NR) , MAT[;COL] , REF_I
,[1.5] (-ROW)) REF_I ’Down’)

:CASE ’>’
V � SPEC_SORT (((-GR_NR) , MAT[;COL] , (~REF_I)

25

,[1.5] (-ROW)) REF_I ’Down’)
:ENDSELECT
MAT � MAT[V;]] sort matrix
ROW � ROW[V]] sort member numbers

:ENDFOR

:IF 0 < ΡCOL_INEQ
I � (/ (1 �[1] V) ` (¯1 �[1] (V � MAT[;COL_INEQ]))

] inequality?
REF_I � NO_MATCH > ROW] mark references
BEG_I � BEG_I ((1 , (I ^ 1 � REF_I)

(((1 � REF_I) ^ (¯1 � ~ REF_I)))
] inequalities at reference only,

equalities if after data and at reference
:ENDIF

DAT_I � NO_MATCH d ROW] mark data

V � BEG_I / Ι 1 � ΡMAT] begin of each group
MAT_NR � (1 � V , (1 + 1 � ΡMAT)) - V] members per group

IND[(1 - NO_MATCH) + DAT_I / ROW]
� DAT_I / MAT_NR / NO_MATCH
 BEG_I / ROW

] member number of first match in reference

6.2 Correctness of algorithm
6.2.1 Prerequisites for correctness

The algorithm completely separates equalities and inequalities. The first are
trivial. We can therefore assume that we deal only with inequalities. The
algorithm begins with a lexicographic sort (using ROW to ensure that at the end
we get the desired first matches). It is necessary to keep the lexicographic order
of the references upright until the end.

The end part is also easy. Assuming that

• each reference comes before all data points that belong in the same dis-
section and

• references are in lexicographic order

the data points are immediately preceded by the corresponding reference.
We have analyzed the building of dissections on inequalities in subsection

5.1. There we used an additional condition on data points followed by references
in the case of strict inequalities.

One must observe that this is superfluous but not harmful in the case of
non-strict inequalities: then such sequences never contain identical members.
Therefore it can be used for all inequalities (as done in the proposed algorithm).

Let us further assume that SPEC_SORT

• sorts by exchanging consecutive pairs or members and

26

• respects flags by never exchanging a pair of members if the second one is
flagged.

Those conditions are conservative and can be relaxed a bit. They are meant to
use the references as a “scaffold” or in other words

• keep the reference members in a stable position relative to each other and

• allow data points to slide up past references as far as necessary but not
more or the other way round.

We (that fore) flag the reference points. It must be noted that this “special
sort” produces an order that does not depend only on the members but also on
their starting order.

Further it must be noted, that for every d ∈ D all r ∈ R↭(d) precede d.
This however does not mean that every r ∈R which precedes a certain d is also
contained in R↭(d). Such a sort does not exist in general.

As an elementary example consider ↭= (≤,≤), D = {(2,5), (4,3)} and R =
{(1,1), (2,4), (3,3)}. We have R↭((2,5)) = {(1,1), (2,4)} and R↭((4,3)) =
{(1,1), (3,3)}. There is no way to sortM as desired.

6.2.2 Proof of correctness

Let d, d′ ∈ D and r, r′ ∈R be arbitrary but fix.

data versus reference We want to establish

{r↭ d} or {∃r̃ ∈R, r̃↭ d and r̃ ends up after r and before d}

⇔ r ends up before d.

We implicitly use the restriction about consecutive pairs on the sort algo-
rithm when we directly compare r with d.

1. We first want to prove that if r ↭ d holds then r ends up before d.
If r ↭ d holds then r ↭lex d also holds. That fore r starts before d
because of the preliminary sort.
In each step r(k) ↭(k) d(k) is true. Should is be checked (should the
members be compared), at strict inequalities this determines that r
stays before d. At non-strict inequalities the use of the variable REF_I
as part of the sort ensures that this is the case even if r(k) = d(k) holds.
It follows that r stays before d. Note that especially for r ∈Rwk,loc(d)
the relation r↭ d holds per definition.

2. Next let r be such that r ↭lex d does not hold. Because of the
nature of lexicographic sort d↭lex r holds and r starts after d. The
condition on flags ensures that this stays so.

3. Next we select a r such that r↭ d does not hold but r↭lex d does.
r starts before d because of the preliminary sort. Let k be minimal
with r(k) ↭(k) d(k) false. Up to the (k − 1)-th sort r stays before d.
Let us assume that r(k) is compared with d(k).
If↭(k) is a non-strict inequality, then r(k) ≠ d(k) and the correspond-
ing sort exchanges the pair (this is allowed as d is not flagged). If
↭(k) is strict then the use of REF_I ensures the switch.

27

After that no switch can occur because r is flagged. This means that
r ends up after d.

4. Finally if in the previous setting r(k) is not compared with d(k) this
means that another member r̃ ∈R blocks the comparison. But d↭lex

r̃ cannot hold, as we have shown, and for the combination r̃ ↭lex d
true but r̃↭ d false we can repeat the same argument.
So r̃ ↭ d must hold and we have found the desired intermediate
reference member.

connectedness of Rwk,loc(d) We now want to show that all members of each
subgroup Rwk,loc(d) end up in consecutive (uninterrupted) order. We
assume Rwk,loc(d) ∩Rwk,loc(d′) = ∅, r ∈Rwk,loc(d) and r ≠ r′.

1. We first note that r ↭lex r′ is equivalent to r starting before r′

because of the preliminary sort. Reference points are however flagged
and never exchanged. That fore

r↭ r′lex ⇔ r ends up before r′

also holds.

2. Now let r↭lex r
′ hold. Per assumption r↭ d also holds, so r ends up

before r′ and d. Let r′ end up before d. Then, as we have established,
r′ ↭ d holds (or at least we can replace it without loss of generality
with an appropriate r̃).
Let k be the first coordinate with r(k) ↭ (r′)(k). Because r ≠ r′ we
may assume that this is a strict inequality. But this means that r(k)

is not extremal with respect to d, in contradiction to r ∈Rwk,loc(d).
It follows that r, d and r′ end up in this order.

3. If r′ ↭lex r holds then of course r′ ends up before r and therefore d.

4. We finally examine d′. If Rwk,loc(d′) = ∅ is empty, then d′ must end
up before all members of R and therefore before r. If it is not then
we may without loss of generality assume that r′ ∈Rwk,loc(d′). Then
d′ ends up after r′, which ends up after d.

We have proved that our algorithm dissectsM correctly. So the only think
that remains is to create SPEC_SORT!

6.3 Special sort algorithm with scaffold
We present some algorithms that can be used for the special sort required to
effectively find weak local matches.

6.3.1 Basic facts about sort algorithms

We consider a primitive algorithm (lets call it “Primitive Sort”), Bubble Sort,
Merge Sort and Natural Merge Sort (based on https://de.wikipedia.org/
wiki/Sortierverfahren) as sort algorithms. The primitive algorithm is a
dumb version of Bubble Sort that loops through the whole array until it gets
stationary. Furthermore all those algorithms are stable.

28

https://de.wikipedia.org/wiki/Sortierverfahren
https://de.wikipedia.org/wiki/Sortierverfahren

It is clear that Primitive Sort and Bubble Sort fulfil the requirements laid
out in subsection 6.2. It is also clear that (and how) they can be modified to
respect the condition on flags.

Merge Sort splits the data into smaller lists and repeatedly zips together
consecutive lists. Natural Merge Sort is the same expect for the definition
of the lists. So both algorithms violate the strict criteria (about comparing
consecutive pairs of members) we laid out in subsection 6.1.

6.3.2 A false special sort algorithm

We want to show that a modification of Merge Sort can be used as a special
sort. To better illustrate the problem we introduce a false start. Let us consider
the following adaption to (Natural) Merge Sort:

1. We start with two lists, S with the starting and E with the ending members,
and an empty result.

2. As long as both lists are not empty and the first member of E is not flagged
we zip members from the lists together as in Merge Sort and append them
to the result.

3. Then we append the rest of S to the result.

4. Then we append the rest of E to the result.

This preserves the stability of the relative position of flagged members and
the property of not-flagged members to slide up past flagged ones but not the
other way round. The non-flagged members can however slide to “high”.

To see this consider the lists S = {0,1,3,0,1,3} and E = {2,4}. The first
and third as the well as the second members respectively are flagged. The first
member of E lands at the third position of the result.

In the setting that interests us however the members of S belong to two
subgroups defined by a previous step of the dissection. The obtained result
destroys the dissection because it groups the data point together with a reference
that does not have the right (extremal) value at a coordinate already processed.

6.3.3 A modification of (Natural) Merge Sort as special sort

Instead we propose the following modified (Natural) Merge Sort:

1. We start with two lists, S with the starting and E with the ending members,
and an empty result.

2. As long as both lists are not empty and E contains a flagged member we
append the result to the last member of E.

3. As long as both lists are not empty we zip trailing members from the lists
together as in Merge Sort and append the result to them. In particular we
reverse the comparison of two members in a way that preserves stability.

4. Then we append the result to the rest of S.

5. Then we append the result to the rest of E.

29

It is clear that the “inverse zip” as such does not alter the results of Merge Sort.
To establish assertions about the results of our special sort algorithm it is

always enough to consider one member in S and one in E at some step of the
process. In all other cases the relative positions of members are preserved.

Because the end of E, beginning with the first flagged member of E, lands at
the end and the rest is compared normally the sort

• preserves the relative position of flagged members,

• allows non-flagged members to slide up past flagged ones but not the other
way round and

• ensures that the position of two members relative to each other is only
changed after comparing them.

6.3.4 Modified proof of correctness

In particular the sort does not (in contrast to the normal Merge Sort) assume
that each list is “correctly” sorted. Using this we can slightly modify and gener-
alize the proof of correctness given in subsection 6.2 (check the latter for further
details).

We write the full proof down again, although in an abbreviated form. Point
1 of “data versus reference” is (only) formally modified; point 3 and 4 use the
property that members are only switched around after comparison; the rest is
the same.

Let d, d′ ∈ D and r, r′ ∈R be again arbitrary but fix.

data versus reference We want to establish

{r↭ d} or {∃r̃ ∈R, r̃↭ d and r̃ ends up after r and before d}

⇔ r ends up before d.

1. We first assume r↭ d holds and prove that r ends up before d. Then
r starts before d and in each step r(k) ↭(k) d(k) holds.
The critical step comes when r(k) is a member of S and d(k) one of
E. But this means at worst a normal comparison of values, the order
is preserved.

2. Next let r be such that r ↭lex d does not hold. Then r starts after
d and the condition on flags ensures that this stays so.

3. Next we select a r such that r↭ d does not hold but r↭lex d does.
Let k be minimal with r(k) ↭(k) d(k) false and let us assume that
r(k) is compared with d(k).
We consider the step where r(k) is a member of S and d(k) one of
E. A comparison means a normal one, as d is not flagged. The two
members are switched.
After that no switch can occur because r is flagged. This means that
r ends up after d.

4. Finally if in the previous setting r(k) is not compared with d(k) this
means that another member r̃ ∈ R blocks the comparison. Then
r̃↭ dmust hold and we have found the desired intermediate reference
member.

30

connectedness of Rwk,loc(d) We now want to show that all members of each
subgroup Rwk,loc(d) end up in consecutive (uninterrupted) order. We
assume Rwk,loc(d) ∩Rwk,loc(d′) = ∅, r ∈Rwk,loc(d) and r ≠ r′.

1. We first note that r ↭lex r
′ is equivalent to r starting before r′ and

that reference points are never exchanged. That fore

r↭ r′lex ⇔ r ends up before r′

holds.

2. Now let r ↭lex r
′ hold. Then r ends up before r′ and d. Let r′ end

up before d so that it may be assumed that r′ ↭ d holds.
Let k be the first coordinate with r(k) ↭ (r′)(k). Because r ≠ r′ it
follows that r(k) is not extremal with respect to d, in contradiction
to r ∈Rwk,loc(d). It follows that r, d and r′ end up in this order.

3. If r′ ↭lex r holds then of course r′ ends up before r and therefore d.

4. We finally examine d′. If Rwk,loc(d′) = ∅ is empty, then d′ must end
up before r. If not then we may assume r′ ∈Rwk,loc(d′) and d′ ends
up after r′, which ends up after d.

We have proved that our algorithm dissectsM correctly. So it can be used
as SPEC_SORT.

6.4 Implementation of the special sort with scaffold
We present some implementations of the special sort required to effectively find
weak local matches in APL. It seems however that a “correct” and smooth
solution should involve some enhancement (like an external function) on the
side of the vendor.

6.4.1 Special sort in APL

The special sort can of course be implemented in APL itself. We give an ex-
ample. It uses Primitive Sort. Its runtime behavior is bad regardless of the
implementation.

Under APL runtime is abysmal. Still the algorithm guarantees that it only
checks and exchanges consecutive pairs of members (and that it is stable). It
can be used as a very transparent reference point.

Algorithm “special sort in APL”

DATA_V � ¯1 � (SORT_V � Ι 1 � ΡDATA)
SIGN � (’Up’ ’Down’ Ι �SORT) � 1 ¯1
SORT_I � 1

:WHILE SORT_I] another loop?
SORT_I � 0
:FOR NR :IN DATA_V] work through all pairs

NR � 0 1 + NR] pair numbers
:IF ~ (¯1 � NR) � FLAG_I

31

] special condition:
closing flagged members are not exchanged

:ANDIF (SIGN × (> /[1] DATA[NR;]) Ι 1)
< (SIGN × (< /[1] DATA[NR;]) Ι 1)

] normal, stable sorting
SORT_I � 1] another loop necessary
DATA [NR;] � DATA [V � =NR;]
FLAG_I[NR] � FLAG_I[V]
SORT_V[NR] � SORT_V[V]

:ENDIF
:ENDFOR

:ENDWHILE

6.4.2 Special sort in .Net

It is of course also possible to create a special sort in .Net, for example in
C#. The author tried out Primitive Sort, Bubble Sort, Merge Sort and Natural
Merge Sort and modified each to accept the flags as required.

It was rather difficult for an APL programmer to handle simple algorithms
whose code run over whole pages. Still .Net solutions that contain the algorithms
were created and can be provided.

Their runtime behaviour on simple 4 byte integer data was comparable to
the version 13 APL+Win Grade Up primitive K. In the case of real numbers the
“correct” interaction with comparison tolerance was not even researched.

The algorithms were used by APL+Win in the form of a dll. Probably
they could be bound in Dyalog directly as C# code. What the author (as
an absolute .Net novice) could not provide was an overload which appears as
one method in APL+Win and that can handle different data types and ranks
without increasing runtime by 1–3 orders of magnitude. . .

We present the core of the modified Merge Sort as an example for a possible
implementation under .Net.

Algorithm “special sort in .Net”

index = len - 1;
// Sort data by merging 2 established consecutive runs at a time.
while (index > (increment - 1))
{

i_r = index;
i_l = index - increment;
begin_r = i_l + 1;
begin_l = begin_r - increment;
if (begin_l < 0)
{

begin_l = 0;
}
i_z = i_r;

// Put trailing elements of rigth run into result,
starting with first flagged element.

32

if (run_flagged[i_r])
{

end_r = begin_r;
while (flags_unsorted[end_r] == false)
{

end_r = end_r + 1;
}
end_r = end_r - 1;
while (i_r > end_r)
{

data_sorted[i_z] = data_unsorted[i_r];
flags_sorted[i_z] = flags_unsorted[i_r];
if (create_vector)

{ vector_sorted[i_z] = vector_unsorted[i_r]; }
i_r = i_r - 1;
i_z = i_z - 1;

}
}
run_flagged[index] =

(run_flagged[index - increment] | run_flagged[index]);

if (sort_up) { i_comp_l = i_l; i_comp_r = i_r; }
else { i_comp_l = i_r; i_comp_r = i_l; }

// Put last element of left run into result if it is
(strictly) greater than the last element of the rigth run,
else use the latter.

while ((i_l >= begin_l) && (i_r >= begin_r))
{

if (data_unsorted[i_comp_l] > data_unsorted[i_comp_r])
{

data_sorted[i_z] = data_unsorted[i_l];
flags_sorted[i_z] = flags_unsorted[i_l];
if (create_vector)

{ vector_sorted[i_z] = vector_unsorted[i_l]; }
i_l = i_l - 1;
if (sort_up) { i_comp_l = i_comp_l - 1; }
else { i_comp_r = i_comp_r - 1; }

}
else
{

data_sorted[i_z] = data_unsorted[i_r];
flags_sorted[i_z] = flags_unsorted[i_r];
if (create_vector)

{ vector_sorted[i_z] = vector_unsorted[i_r]; }
i_r = i_r - 1;
if (sort_up) { i_comp_r = i_comp_r - 1; }
else { i_comp_l = i_comp_l - 1; }

}
i_z = i_z - 1;

33

}
// Put residual elements of left run into result.
while (i_l >= begin_l)
{

data_sorted[i_z] = data_unsorted[i_l];
flags_sorted[i_z] = flags_unsorted[i_l];
if (create_vector)

{ vector_sorted[i_z] = vector_unsorted[i_l]; }
i_l = i_l - 1;
i_z = i_z - 1;

}
// Put residual elements of rigth run into result.
while (i_r >= begin_r)
{

data_sorted[i_z] = data_unsorted[i_r];
flags_sorted[i_z] = flags_unsorted[i_r];
if (create_vector)

{ vector_sorted[i_z] = vector_unsorted[i_r]; }
i_r = i_r - 1;
i_z = i_z - 1;

}
index = index - (2 * increment);

}

6.5 A sorting algorithm for weak global matches
6.5.1 Outline of a possible algorithm

We now search for weak local matches. As in subsection 5.1 the variables REF
and DAT represent R and D respectively and REL stands for the relation↭. The
remarks about Z, R and alphanumeric data hold.

We want to use the alternate approach to strong global matches presented
in subsection 5.2 to find the desired matches. We can find weak matches using
the algorithm ”weak local match” and then decide if those are also (weak) global
(matches). To these means we start with an arbitrary but fix d ∈ D and denote
with r the first weak local match (if it exists.)

We indicate the potential for a weak global match as 1wk,gl0 (d). For each
coordinate we successively examine if r(k) is also globally extremal. If not then
there exists no match. In formulas

1
wk,gl
k (d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if k = 0 and Rwk,loc(d) ≠ ∅
1
wk,gl
k−1 (d) if k ≥ 1 and

r(k) = extr{(r′)(k); r′ ∈R↭(d)}
0 else

If and only if 1wk,gln (d) is true there exists a weak global match (Rwk,gl(d) ≠
∅) and (then) r is the first match. (We used a particular order to check the
conditions of extremality but it is obviously arbitrary and not relevant for the
end result.)

34

6.5.2 Outline of implementation of trivial case in APL

We try to find an implementation of the proposed algorithm suitable for APL.
The problem is the restriction of the extremal values to R↭(d). We have seen
in subsection 4.4 that it is not (in general) possible to sort M in such a way
that each d is preceded exactly by R↭(d).

If D = {d} contains only one element it is easy to see a solution. Successively
for each coordinate in their natural order

1. drop all members following d and then

2. sort using Grade Up or Grade Down.

This uses the fact that R↭(d) precedes d at the end of the algorithm ”weak
local match”. Unfortunately R↭(d) depends on d in a way that does not allow
for easy generalisation.

Of course the problem can be solved by looping through the data points d.
These however will not yield a practically useful algorithm. More generally the
solution will at best behave like O(M2 ⋅ log(M)) with M = ∣M∣.

6.5.3 Discussion of the problem

We cannot of course use a normal sort to find the relevant extremal value for
an arbitrary coordinate. The sort cannot distinguish between R↭(d) and the
rest of R. In that sense it is too flexible.

On the other side the special sort with scaffold is too rigid. Using it on the
result of ”weak local match” leaves M completely stationary. More general it
is easy to see that a reference can block a data point, not allowing it to reach
another reference with higher value that precedes the first.

It is possible to define an intermediate sort variation that

• compares adjacent pairs m and m′,

• exchanges a leading reference m and/or a trailing data point m′ if m↭m′

does not hold (ordinary sort condition) and

• never exchanges a leading data point with a trailing reference.

This new special asymmetric sort algorithm comes near to a solution but
is not good enough. To pinpoint the problem consider first the case of one
coordinate. Let d be a data point preceded by a reference r that happens to be
the relevant extremal one.

It can happen that there is a data point d′ with r ↭ d′ and a reference r′

with r′ ↭ d. Let further r′ ↭ r hold. If the 4 members start in the order
(. . . , r, d′, r′, d, . . .) then they are stationary under the new algorithm, so the
right extremal value cannot be matched to d.

As an example let d = (2,3), d′ = (1,4), r = (1,3) and r′ = (2,2) be 4
members with 2 coordinates. The result of ”weak local match” leavesM in the
order (r, d′, r′, d). Although Rwk,loc(d) = {r′} and Rwk,gl(d) = ∅ evidently hold
sorting the second coordinate encounters the problem just described.

Furthermore Rwk,gl(d′) = {r} holds and the example shows that there is no
obvious way to “sort” the 4 members the “right way” with respect to the second
coordinate. The desired result is (r, d, d′, r′) and there does not seem to be a
rule that would lead to the pair (r′, d) getting exchanged.

35

6.5.4 A possibly suboptimal circumvention

To give any algorithm for weak global matches at all we use the symmetry of
their definition. Both R↭(d) and the extremal values defining Rwk,gl(d) do not
depend on the order of the coordinates.

For each d ∈ D and for each permutation π ∈ Sn we can define a weak local
match Rwk,locπ (d). If there is a weak global match then Rwk,gl(d) = Rwk,locπ (d)
must hold for every π.

On the other hand the first coordinate of each weak local match is a global
extremal value with respect to d. For the existence of a weak global match a
reference must be found whose coordinates are all extremal with respect to d
(and that fore R↭(d)). If all Rwk,locπ (d) are identical they definitely fulfil the
requirement.

Furthermore it is clearly enough to examine the n cyclic permutations π ∈ Sn
of length n because each of them makes another coordinate the first one. We
may that fore circumvent the sorting problem:

1. for each π ∈ Sn cyclic of length n find Rwk,locπ (d) and note the index of
the first match for all d ∈ D

2. compare the n indices for each d

3. if and only if all indices are identical and less or equal than ∣R∣ (see sub-
section 4.2 on the convention for non-existent matches) for a specific d
there is a weak global match Rwk,gl(d)

This algorithm can obviously be implemented in APL as a loop on weak
local matches. It is not however obvious if there exists a significantly better
solution.

36

	1 Matching under equality via sorting algorithms in APL
	1.1 The problem of matching rows of matrices
	1.2 Solutions via APL primitives
	1.3 Solution with sorting algorithm
	1.4 Match on equality as a example for sorting algorithms

	2 Matching with “final” inequality
	2.1 Cases where a match is not an equality
	2.2 A sorting algorithm as solution
	2.3 Strict inequality
	2.4 Other relations

	3 Matching with “initial” inequality
	3.1 Cases with initial inequality
	3.2 The first type of match on initial inequality
	3.3 A different type of match on initial inequality
	3.4 A practically not very important match type
	3.5 A match problematic on the APL side
	3.6 Some remarks on matches and their different types

	4 Matching on set equality and relation
	4.1 Setting
	4.2 Matches in general
	4.3 Definition of some interesting types of match
	4.4 Analysis of the different types of match
	4.4.1 Comparison and true inclusions
	4.4.2 False inclusions
	4.4.3 “Commutativity” of relations

	4.5 Disjoint dissections

	5 Algorithms for two kinds of match
	5.1 A sorting algorithm for strong local matches
	5.1.1 Description
	5.1.2 Algorithm
	5.1.3 Proof of correctness

	5.2 A sorting algorithm for strong global matches
	5.2.1 Introduction
	5.2.2 Algorithm
	5.2.3 Proof of correctness
	5.2.4 An alternative approach

	6 Tentative algorithms for problematic matches
	6.1 A tentative sorting algorithm for weak local matches
	6.1.1 Introduction
	6.1.2 Algorithm with a gap

	6.2 Correctness of algorithm
	6.2.1 Prerequisites for correctness
	6.2.2 Proof of correctness

	6.3 Special sort algorithm with scaffold
	6.3.1 Basic facts about sort algorithms
	6.3.2 A false special sort algorithm
	6.3.3 A modification of (Natural) Merge Sort as special sort
	6.3.4 Modified proof of correctness

	6.4 Implementation of the special sort with scaffold
	6.4.1 Special sort in APL
	6.4.2 Special sort in .Net

	6.5 A sorting algorithm for weak global matches
	6.5.1 Outline of a possible algorithm
	6.5.2 Outline of implementation of trivial case in APL
	6.5.3 Discussion of the problem
	6.5.4 A possibly suboptimal circumvention

