
RH
O

M
BO

S-
VE

RL
A

G

IS
SN

 -
 1

43
8-

45
31

Ja

hr
ga

ng
 3

5
N

r.
1-

2
20

16
 D

op
pe

ln
um

m
er

 A

PL
-G

er
m

an
y

e.
V.

1-2/2016

Michael Baas

Bericht von Dyalog
2016

IM BLICKPUNKT

James A. Brown
A Personal History of APL

Jon McGrew
Forgotten APL Infl uences

James A. Brown and
Peter Schade
The Evolution of Computing

www.apl-germany.de

A Programming Language

APL-Journal

1APL - Journal 1/2/2016

Liebe APL-Freunde,

ich freue mich sehr, Ihnen das APL Journal zukommen zu
lassen.

In 2016 konnten wir für APL ein rundes Jubiläum begehen:
50 Jahre IBM APL. Dazu hatten sich viele APL-Freunde aus
dem In- und Ausland bei der IBM in Böblingen
zusammengefunden.

Eine weitere Veranstaltung hatten wir an der Hochschule in Bin-
gen abgehalten.

Als Ergebnis haben wir erfreulicherweise auch schri� liche Bei-
träge für das APL Journal erhalten. An die Autoren ist deshalb
ein besonderer Dank gerichtet.

Ich wünsche Ihnen viel Freude bei dem Lesen der vorliegenden
Ausgabe des APL-Journals.

Ihr Dr. Reiner Nussbaum

APL Germany

Editoral

2 APL - Journal 1/2/2016

Bildnachweis:
Martin Barghoorn (Umschlagseite 1, 4)

INHALT
A Personal History of APL 3

Forgo� en APL Influences 21

The Evolution of Computing 55

Bericht von Dyalog 2016 64

50 years IBM APL 41 years IBM 5100 73

APL-Journal

James A. Brown

A Personal History of APL
This paper contains Dr. James A. Brown’s personal
recollections which are accurate to the best of his ability
but could be colored by 50 years of time.

Jon McGrew

Forgo� en APL Influences
Each of these conferences typically focus on the future,
rather than simply reviewing the past and rehash what
we did years ago. I appreciate that. However, because this
is the 50th anniversary of APL, my presentation is going
to talk about history.

James A. Brown and Peter Schade

The Evolution of Computing
� is paper is extracted from the HTML presentation made
at the conference. Without the discussion that accompa-
nied the presentation, not everything is easily understood.
However, some text is added below for clari� cation.

Michael Baas

Bericht von Dyalog 2016
Das diesjährige Dyalog-Benutzertre� en fand vom 9-13.
Oktober in Glasgow statt. Der Chronist als einer von 2
deutschen Teilnehmern möchte mit diesem Artikel gerne
informieren, was da so alles geboten wurde.

Gerald Di� rich

50 years IBM APL 41 years IBM 5100
A personal computer that dominated the market from
1975 to 1983

3APL - Journal 1/2/2016

A Personal History of APL

James A. Brown

A Personal History of APL
On the occasion of the 50th anniversary of the APL workspace 1 CLEANSPACE
German Guide Share Europe Working Group, APL Germany and IBM Germany
November 27-29, 2016 IBM Böblingen, Germany1

� e Early Years
Personal History

� is paper contains my personal recollec-
tions which are accurate to the best of my
ability but could be colored by 50 years of
time. A longer version of this paper can be
found on the APL Wiki at http://aplwiki.
com/OnAPLsHistory
� at version contains a discussion of var-
ious events through the years that involve
people and the lighter side of technical and
customer meetings including some details
about the great empty array joke contest.
� e APLWiki paper will be updated as peo-
ple involved in the early days give me cor-
rections or additional information.

How I came to APL

I � rst heard of Ken Iverson, the inventor
of the original APL notation, shortly af-
ter I started work in 1965 at IBM Federal
Systems in Owego, New York. (My work
history is summarized in Appendix 2.) A
colleague (Charlie Stieglitz) was talking in
the hall about this person who “reduced
the design of the System 360 to a sin-
gle symbol”. I thought this was a bit of an

outrageous claim (and it probably was) but
I decided to check up on it. I had been in-
terested in symbolic notations for a while
and when in college read much of Alfred
North Whitehead and Bertrand Russell’s
“Principia Mathematica” [WI1] working
out all the proofs. I went out and got Ken’s
book “Automatic Data Processing” [IV1]
co-authored with Fred Brooks. � en I got
“A formal description of SYSTEM/360”
[IV2] by Falko� , Iverson, and Susseng-
uth – an amazing piece of work which
later became known as the “grey manual”.
I was told that when engineers were try-
ing to � x a problem with the I/O channel,
they referred to the formal description not
the machine documentation. I thoroughly
enjoyed time spent on this document and
came to appreciate that symbolic notation
really can be used for describing real as well
as formal systems.

Being a newcomer in the computer world
(note that the term Computer Science did

1. If you’re looking for a technical paper,
this isn’t it. In this paper I document my early
involvement with APL and what I learned about
the early history.

4 APL - Journal 1/2/2016

A Personal History of APL

not exist at this time), a friend and I de-
cided to join the ACM (Association for
Computing Machinery). One of the meet-
ings was a dinner meeting featuring some
unknown speaker and we decided to take
our wives to the meeting. I’d always heard
that the way to a woman’s heart is through
technical computer meetings. (I have no
corroborating evidence that this is true.) � e
speaker was a man named Adin Falko� who
had a portable (by some extended meaning
of that word – it came in two suitcases) 2741
terminal which he connected to a phone line
and dialed into a computer at IBM Research
Yorktown Heights and showed us APL.

Figure: Adin Falko�

He carefully and patiently explained to
the telephone operator that the phone line
would be used to communicate with a
computer and the noises on the line were
normal. Nevertheless, the session was in-
terrupted several times when the connec-
tion was terminated by the operator.

I was completely mesmerized by the pre-
sentation. Adin typed in “2 space 3 back-
space backspace plus” and pressed return
and it typed “5”. He called it visual � delity.
I was so impressed. I recall our wives were
not as impressed by this as they were ap-
parently able to work out this result in their

heads without use of a terminal, phone line
and a computer (something that would
never occur to a man). A few years ago, I
showed this “visual � delity” concept again
at a German APL meeting using the newly
open source code of “APL\360” where I
typed in “F” “backspace” “L” and displayed
the value of the variable “E”. [SU1] Adin
showed one wonderful thing a� er another
and I le� this meeting very excited by this
brand new technology.

Imagine, a programming language with-
out any declarations! No Declare statement
– No DIMENSION statement. � e number
of items of data determines the size of the
data structure that holds them. Unheard of.
If you have zero items of data, you have an
empty array. Can you imagine a DIMEN-
SION statement for zero items?

IBM Owego had a 2741 terminal with
a phone line where I could attach to the
APL system at IBM Research in Yorktown
Heights. Adin told us how to contact the
APL operator using the system command “)
MSG”. � e operator of the APL machine at
Yorktown was Gerry Barrett and she added
an account for me using my IBM employee
number and I was o� doing my � rst APL ses-
sion. (Note that Gerry Barrett ran the APL
service at IBM Yorktown and, to my knowl-
edge was never applied to function oper-
ands to return a derived function – that’s a
di� erent kind of operator. Also note that in
the fall of 1986, IBM held an “Internal Tech-
nical Liaison” ITL meeting for the 20th an-
niversary of APL and Gerry was presented
with an award.) A� er I had been playing
with APL for a while, Gerry sent me another
message asking for an account number to

5APL - Journal 1/2/2016

A Personal History of APL

which my usage could be charged. “Oh Oh”
I thought and quickly signed “)OFF”. I asked
my manager for an account number and he
was completely uninterested in letting me
“play on company time.”

� at might have been the end of my time
with APL but one of the bene� ts that IBM
o� ered as part of employment was the abil-
ity to take graduate courses at Syracuse Uni-
versity for free. � ey would � y professors
from Syracuse to Endicott, New York and we
could take classes one evening a week. One
of the teachers, Bill Jones, mentioned how
Syracuse University was going to get an APL
installation. (I’m pretty sure the only other
APL installation outside of Yorktown at this
time was at a college in Canada.)

I decided I would go back to school at Syra-
cuse and work on APL. IBM provided grants
for employees to get advanced degrees so I ap-
plied for a grant. I was denied so I took a leave
of absence from my job at IBM Owego to go
on campus full time and run their APL ser-
vice for a salary of $500 per month. (Students
give Universities a really cheap work force.)
It is, perhaps, interesting that my reading of
“Principia Mathematica” [WI1] was accepted
as ful� lling the mathematical logic require-
ment for my doctorate. Syracuse also had a
foreign language requirement for a PhD and
I always thought I would use German but it
turns out that, at that time, FORTRAN was
one of the accepted languages. I guess it’s for-
eign enough. (By the way, more FORTRAN
programmers have died than APL program-
mers. � at has to tell you something!)

I was at Syracuse when Al Rose vis-
ited with his famous “portable” 2741 (120

pounds - maybe the same one Adin used
the � rst time I saw him). Sometimes when
Al wanted to give a demo of APL, he would
be unable to get a phone connection to
Yorktown Heights. He solved this prob-
lem by noting that the electric typewriter
used an acoustic coupler to communicate
with the computer. He hooked up a cassette
tape recorder to the coupler and recorded
the tones from the coupler while he was
giving a live demo. Now when he couldn’t
get a phone line, he played the tape into the
coupler and it reproduced the demo ses-
sion he had recorded in real time – errors
and everything. � is is memorialized in the
song “APL Blossom Time” written by Mike
Montalbano [MO3].

Fortunately (in some perverse meaning of
that word), Karen and I ran out of money
a� er six months at Syracuse and, in the
spring of 1969, I had to get a second job.
I applied to IBM Yorktown Research for
a summer job. (Note that this application
was done by writing words on paper, put-
ting the paper in an envelope with a stamp
and sending it though the Post O� ce. � is
was called a letter. � ere’s a whole gener-
ation of people now who could not imag-
ine such an archaic way to communicate.)
Despite this cumbersome way to apply for
a job, my application was quickly rejected.
Again, fortunately, I had also sent a letter
directly to Adin Falko� of the APL group
and they invited me for an interview.

Karen and I showed up at Yorktown
Heights on the appointed day and time
only to � nd that the interview had been
canceled. Because of the death of President
Eisenhower, the lab had been closed the

6 APL - Journal 1/2/2016

A Personal History of APL

previous day and a scheduled “APL Machine”
seminar had been moved one day later. � ey
had tried to reach me to cancel the interview
but did not succeed. (Why didn’t they send
an Email or call me on my cell phone?) But
I did see Ken in the � esh for the � rst time
standing outside the auditorium.

Figure: Ken Iverson

I wish I could have attended the APL Ma-
chine Seminar. I’m told that central to the
discussion was Phil Abram’s PhD disser-
tation “An APL Machine” [AB1]. His con-
cepts of drag along and beating made it into
the implementation of APL2. It’s always felt
like a hardware implementation of APL was
a natural idea. Even today, NestedComput-
ing and the “Array Operating System” � rst
suggested by Mircea Morosan are being
pursued and might in� uence hardware.

Karen and I came back to the Yorktown
lab the next day for the interview and I met
Ken Iverson, Adin Falko� , Larry Breed,
Dick Lathwell, and the team for the � rst
time. I got the job and spent the summer at
the lab with the APL team. I know now that
Ken and Adin sort of took turns managing
the group but the focus was always on the
work not the management. I’ve told this
story many times before but I had assumed
that Adin was my manager. It turns out that

Larry Breed was actually my manager but
I didn’t � nd out until the exit interview at
the end of the summer. (As a strange twist,
many years later Larry worked for me at
IBM in Palo Alto. I hope he realized it.) Be-
cause Larry made an administrative error,
my summer job was not terminated and
each summer I would go back to Yorktown
for a few months and I continued for three
years working remotely from the local IBM
o� ce in Syracuse during the school year. In
those years, among other things, I imple-
mented the extension of “base value” and
“representation” (now called “decode” and
“encode”) to higher rank array arguments
and “catenate” on higher rank arrays (it
only worked on vectors before).

� ere was a problem with the de� nition
of “base value” and “representation”. Be-
cause “representation” only worked on sca-
lars, the implementation treated a one item
vector right argument as a scalar:

 




When extending to higher rank arrays,
with the desired shape equation, the result
of “representation” of a one element vector
would change to be a one-column matrix:

 






7APL - Journal 1/2/2016

A Personal History of APL

We were running a time sharing service
and having a primitive function suddenly
get a di� erent answer was a potential prob-
lem. To measure the impact of the change,
we put counters in the code to count the
number of times “representation” was ap-
plied to a one-item vector and the number
of times it was applied to a scalar. At the
end of the day, the counter showed there
were many times more of application of
“representation” to one-item vectors than
to scalars. Way more than expected and a
big problem. We speculated that this could
be because the shape of a vector was itself
a one-item vector. Maybe one-item vec-
tors were more common than we thought.
� en, I discovered that another summer
employee, Seth Breidbart, overheard us
talking about the counters and put two ter-
minals into in� nite loops taking the “rep-
resentation” of one-item vectors. � is was
going to be my � rst assignment and I really
wanted to do it so I � red up three terminals
taking representation of scalars and a� er a
while, my counter surpassed his counter by
enough that I was given the go-ahead to do
the implementation.

Not many people had the ability to work
on computers remotely in those days. I was
using a time sharing system called “Time
Sharing System” (TSS) and it turns out that
for months, my usage was not billed to
the APL group. � ere was a bug in “free-
main” the API that released allocated stor-
age. Each time I logged o� , TSS crashed as
(I assume) my workspace was released. I
was logging o� so I didn’t notice anything
unusual. Because session accounting was
done on log o� , the APL group were never
billed for my usage. Eventually the TSS

system programmers noticed that in every
core dump, my ID was on the system.

In the original APL, an array was either all
numeric or all character. I met Trenchard
More during a summer at Yorktown and
heard discussions of extending APL. I le�
IBM that summer with the idea that there
was no need for arrays to be all numeric or
all character. Since I decided to work on
extended APL for my PhD Dissertation,
I was (quite properly) not permitted ac-
cess to the proposals that were active at
Yorktown in particular the work of Tren-
chard. My dissertation “A Generalization
of APL” [BR1] was published in 1971 and
contained arrays that could contain some
numbers some characters and recursively
some arrays. I graduated from Syracuse
in the � rst computer science class with a
PhD in Computer Science and moved to
IBM at the Philadelphia Scienti� c Center
where the � rst lines of code for APL2 were
written.

Stories from the early years

Much of what I’ll say in these sections is
not � rsthand knowledge but rather things
told to me or overheard by me. Someone
with more personal knowledge should
corroborate.

For some time in the early years, the term
“Iverson Notation” was used to describe the
symbolic notation invented by Ken Iverson.
At some point, the team decided that they
needed to give a formal name to the nota-
tion. I was told that many names were pro-
posed and most people hated most of them.
I wish someone had recorded the names

8 APL - Journal 1/2/2016

A Personal History of APL

that were suggested but only the � nal name
survives. I was told that it was Adin who
suggested taking the initials of Ken’s book
“A Programming Language” [IV3] and APL
was born. To this day we still need to point
out that the word “Programming” in the
title of Ken’s book did not refer to “Com-
puter Programming” but to “Mathematical
Programming” and “Linear Programming”.
I wonder how the computing world would
be di� erent if they had chosen the name
“Java”.

� e � rst implementation of Iverson no-
tation was done by Herb Hellerman in a
system called “PAT” (Personalized Array
Translator System) [HE1] – an interactive
(but not time-shared) system on an IBM
1620 not using Greek characters. (I have
met Herb Hellerman and I can testify that
this picture does not do him justice but it’s
the best I could � nd.)

Figure: Herb Hellerman

Ken used Hellerman’s implementation with
students in the local secondary school. � is
led to his book on elementary functions
[IV4].

Not long a� er this, the IBM Selectric type-
writer became available and a type element
with the symbols used in Iverson Notation
was created.

Figure: IBM Selectric typewriter

Creation of the type ball was complicated
because opposite sides of the ball had to
have characters of the same density so that
balance was preserved. I am told that Herb
Hellerman called these “Iverson Balls” and
this term was used until Ken himself re-
quested that they be called “Iverson Type
Elements”.

Figure: “Iverson Type Elements”

When I � rst arrived at Syracuse University
to start graduate school in earnest, there
was not yet a local installation of APL. � ey
had a 2741 and a phone with an acoustic
coupler just like they did at IBM Owego.
� ere was a problem with using this termi-
nal because the type ball was o� en missing.
You removed the type ball just by li� ing
the clip on the top. It became popular for
the young female students to steal the type
ball and wear it on a necklace around their
neck as a love bead. (Remember this was
the 1960’s.). � e solution was to break o�
the clip on the type ball making it di� cult

9APL - Journal 1/2/2016

A Personal History of APL

to remove. Garth Foster (who became my
� esis advisor) was the holder of the type
ball and you had to reserve time on the
terminal.

In 1965, Larry Breed and Phil Abrams
built a version of APL in FORTRAN on an
IBM 7093 at Stanford University. � is was
around the time that the “Formal Descrip-
tion of System 360” became available. I had
read this paper and I didn’t � nd any errors.
But Larry told me that he did � nd an error
in the formal description and when Ken vis-
ited Stanford (maybe to see their APL im-
plementation – this I don’t know for sure) he
and Phil had lunch with Ken. Larry said he
waited until Ken had cake in his mouth and
then told him about the error. It was prob-
ably this meeting that led Larry to come to
IBM Yorktown to work on APL.

� e APL implementation that I used
from IBM Owego and Syracuse was hosted
at IBM Yorktown on an IBM 360 model 50.
� is machine had a total of 256K of mem-
ory. It ran on the DOS operating system
(not the DOS from PC days) and when
APL was loaded it replaced part of the op-
erating system because there was not room
for both APL and the DOS operating sys-
tem. Users were given 30K workspaces
which were swapped from disk to memory
and back as users computed. APL is such a
compact notation that you can do signi� -
cant work in a 30K workspace. No one had
ever seen anything like it.

When you wanted to attach to the APL
service, you called a toll free number and,
when you heard a whistling sound, you put
the phone into an Acoustic Coupler.

Figure: Phone with Acoustic Coupler

� e back of the computer room in York-
town was a wall of telephones to receive
these calls. When the APL service was
unavailable, dozens of phones would be
incessantly ringing. I was in the machine
room with Graham Driscoll (a member of
the APL group) during one of these down
times. He would go back to the phones and
pick them up and make a whistling sound
with his mouth and I suspect most people
put the phone on their side into the coupler
thinking the computer had answered and
tried to sign on.

� e APL service at Yorktown ran 24 hours
a day – something that was not only not
normal at that time but at Yorktown not
even allowed. At night, the computer ran
unattended and that was forbidden. � e
APL group did it anyway and was continu-
ally bothered by management because of it.

At some point, management decided that
the machine should be shared with another
group in the lab. It was, a� er all, a valuable
resource. I’m told that Adin told Eugene
McDonnell to go to the machine room
and guard the door. When people from
the other group showed up to use their

10 APL - Journal 1/2/2016

A Personal History of APL

machine time, Eugene physically prevented
them from entering the room. � is led to a
big problem and eventually, the APL team
lost the � ght for the machine. I’m told that
because of this, Ken Iverson resigned from
IBM. � e team had a going away party for
Ken and at the party, someone from IBM
management talked to Ken and o� ered to
let him keep the machine. (� is might be
when Ken was made an IBM Fellow but I
am not certain about that.) � e APL group
had its own machine for the rest of its time
at Yorktown and when the group moved
to form the Philadelphia Scienti� c Center,
they again had their own computer.

IBM � omas J. Watson Research Center
Yorktown Heights

� e building is in the shape of an arc of
a circle on a rising hill and has dark glass
on the front. O� ce corridors run from the
front to the back so no o� ce has a window
- a big advantage if you want to grow mush-
rooms. � ere are three � oors but the city
of Yorktown only allows buildings with two
� oors. Because of this, the o� cial main en-
trance is in the back of the building higher
on the hill so from the
back it is a two � oor build-
ing. � e bottom � oor was
� oor “0”. In the USA, the
ground � oor of a building
is normally � oor 1. Even
at Yorktown, zero-origin
indexing was preferred.
It makes sense to me that
� oors are numbered by
their distance from the ground not that dis-
tance plus one. Here’s a picture of the real

main entrance to the lab in the “back” (?
“front”) of the building (see photo below).

It was a joy to work at Yorktown heights.
� e work was important and little else was.
At IBM Research there was only one job for
technical people “Sta� member”. Everyone
was treated equally. � at’s probably why I
didn’t know who my manager was. Every
year all the sta� members were ranked
from � rst to last and if you ranked in the
lower third two years in a row, you had to
� nd another job.

� e head of research at that time was a
Mathematician (name forgotten) and the
one “unequal” thing he insisted was that
the mathematicians at the lab had larger
chalk boards than the other employees.
� e APL group held that this was needed
because of their cumbersome notation. It is
o� en reported, but not true, that the APL
group had small thin chalk boards suitable
for writing APL one liners.

� ere’s one memo from management that
I wish I had saved. � e APL group played
Frisbee at lunch time and the black 150

Figure: IBM � omas J. Watson Research Center
Yorktown Heights

11APL - Journal 1/2/2016

A Personal History of APL

gram Frisbee was registered with the IFC. If
it was raining, we sometimes played Frisbee
in the hallway. � is le� some black streaks
on the wall on those rare occasions we did
not execute a perfect toss. Management
sent a memo saying “Only white Frisbees
indoors”. How cool.

Library 1 CLEANSPACE

� e � rst version of APL had no library
system. You signed on, typed in your pro-
gram, played with it and all was lost when
you signed o� . If, in the middle of a session,
you wanted to start over, you would sign
o� and back on again and again have an
empty workspace. Since there were a lim-
ited number of phone lines, you could not
always get back on immediately. When Sys-
tem commands and a library system were
added in 1966, the � rst workspace saved
was library 1 CLEANSPACE with the now
famous timestamp of 1966-11-27 17.53.58.
� is workspace had no functions or vari-
ables and so was formatted as a workspace
but otherwise complelely empty. Now you
could save your work in your own private
library. � ere was no)CLEAR command.
If you wanted to start over with an empty
workspace, you loaded 1 CLEANSPACE.
Much better than signing o� and back on.

When)CLEAR, to give you an empty
workspace, was added, CLEANSPACE was
no longer needed so Adin deleted it by en-
tering “)DROP 1 CLEANSPACE”. He had
second thoughts and decided CLEANS-
PACE should be kept for historical reasons
and asked Dick Lathwell to add it back.
Dick set the clock of the model 50 to the
original timestamp with the clock disabled

and started APL and entered “)SAVE 1
CLEANSPACE” However, an interval timer
interrupt was required to enter the sched-
uler, so he momentarily enabled the clock.
� e SAVE happened but the clock advanced
one second so the timestamp we see now is
one second later than the original. [JS1]

When APL does operations on num-
bers (like comparisons or conversions) it
uses fuzzy operations so, for example, the
number 1.99999999999999999 is treated as
2 if it is used as an index. � e implemen-
tation had a constant called Comparison
Tolerance (CT) stored in the bottom of the
workspace and set to 1E-13 that was used
in these adjustments. � ere was no way
for a user to adjust this constant. How-
ever, for some scienti� c calculations, you
do not want any adjustment to numbers
so a workspace 1 HEISENBERG was saved
with Comparison Tolerance set to zero so
there would be no uncertainly in compu-
tations. � is workspace never received the
acclaim of CLEANSPACE. In modern APL
systems, users can set any reasonable value
of Comparison Tolerance. HEISENBERG
was no longer needed and was dropped. It
was never recreated. Where’s Dick Lathwell
when you need him?

Vector Notation

I have a printout from an early APL ses-
sion (from before I joined the group) and it
shows expressions like this:

 �2�3�4�5� � �20�30�40�50�

�22�33�44�55�

12 APL - Journal 1/2/2016

A Personal History of APL

Notice how numeric vectors were written
like you might see them in mathemati-
cal textbooks you would see at that time.
Larry Breed was very proud of the code he
wrote in the parser which could recognize
the parenthesized expression as a numeric
constant and store it internally in the APL
workspace as a single token with a vector
value. APL programs are executed by an
interpreter that at execution time must ex-
amine every token so Larry’s enhancement
meant faster execution because it could
scan one token instead of many.

I was told that it was a very painful deci-
sion to change the syntax of APL so that the
parentheses and commas were not needed.

 2 3 4 5�20 30 40 50

22 33 44 55

A� er all, unless you know the rules are
otherwise, it sure looks like there is the ex-
pression “5+20” in the middle. � e deci-
sion was made that forming of vectors was
more important than the application of
operations.

In my opinion, this was a revolutionary step
in the development of the language. � ere
was already the idea that the less dense char-
acters (those that used the least ink) should
be for the most important uses. Using ‘.’ for
an operator uses this principle. What’s the
least dense character? It’s the space charac-
ter. And now it is being used for the most
important role - forming vectors. It’s inter-
esting that the least dense character is as-
signed to the largest key on the keyboard!

When I was designing the APL2 lan-
guage, without going into details, I de-
cided again that forming of vectors was
more important than the application of
operations so if A, B, C, D, E, F are any
arbitrary arrays,

 A B C+D E F

means

 (A+D)(B+E)(C+F)�

� is decision (prompted by the work
of Trenchard More in his Array � eory
[MO2]) led to the most di� cult arguments
between the originators of APL and me. I
always looked for a compromise that would
make all parties happy but in this case, it
was not possible.

When I moved from APL Development
at IBM Santa Teresa in California back to
IBM Research in Yorktown Heights, the
California group was worried that I’d give
up on vector notation. Gene McDonnell
said to me before I le� “We will know
you have caved in when Vector Notation
disappears”. I didn’t cave (painful though
that was) and when Gene moved to I.P.
Sharpe, he changed his mind about vector
notation.

One objection to this vector notation ex-
pressed during the decision making pro-
cess is that more expressions become un-
readable without redundant parentheses.
I believe this argument has some validity
but, for me, other arguments carried the
day. � is is why, once formal requirements

13APL - Journal 1/2/2016

A Personal History of APL

are satis� ed, language design is an art not a
science.

People have said that APL programs are
unreadable. Some have even called APL a
write only language. Alan Perlis (famous
American computer scientist who was on
the ALGOL team) once said this about APL
and the APL interpreter:

“APL is like the Bible. It is not meant
merely to be read but to be interpreted.”

It was a clever play on words.

In the early days, when the universe of
APL people was very small, decisions were
made by consensus. I remember taking
ideas to Adin. He would pick them apart
and tell me how terrible they were (this was
Adin’s style). I’d take the same ideas to Ken.
He would pick them apart and tell be how
promising they were (this was Ken’s style).
As days went on and ideas were discussed,
slowly Adin’s and Ken’s opinions would
converge and almost every time their
merged opinions were clearly correct. (� is
balance was lost when Ken le� the group
years later.) As APL became popular and
more people became involved it became
more di� cult, and eventually impossible,
to reach consensus on decisions that had to
be made.

� e di� erences of opinion over my “Vec-
tor notation”, operator de� nitions and
nesting were never resolved and led to two
styles of array computing from di� erent
companies. You’re not right because people
agree with you and you’re not wrong be-
cause people disagree with you. You have to
make technical decisions without emotion

based on formal arguments. You should ask
for advice from a lot of people but not so
they can tell you the answer. Rather you ask
so that you have the alternatives you need
to make a decision.

Another case where I made a compro-
mise was in the 1982 APL2 IUP where, in
an attempt to gain agreement, I changed
the de� nition of some operators (notably
Outer Product) to a more � at orientation.
� is seemed reasonable because the older
behavior I wanted could be achieved my
applying “each” to the operand. � is was a
terrible decision.

In 1982, IBM and STSC announced their
enhanced APL products on the same day.
Here’s an article from ComputerWorld:

Figure: Article about enhanced APL products

STSC’s had the de� nitions of the opera-
tors from my PhD thesis and IBM’s did
not. � anks to Bob Smith, who visited
IBM Santa Teresa sometime a� er he le�
STSC, the decision was reversed before
the release of the o� cial Program Prod-
uct two years later. Bob Smith is also re-
sponsible for some of the nomenclature.
I called the extended arrays “General Ar-
rays”. Bob called them “Nested Arrays”
and I felt this name was more descriptive
and adopted it.

14 APL - Journal 1/2/2016

A Personal History of APL

I’m very proud of the � nal de� nition of the
APL2 language and its correctness is due to
a myriad of interested and talented people.

You can � nd a chronology of APL Systems
and in� uences at http://www.sigapl.org/
APLChronology.php.

APL Blossom Time

� e song “APL Blossom Time” was writ-
ten by Mike Montalbano using the pseud-
onym J.C.L Guest. Mike used a pen name
for many of his writings. He wrote several
articles for “Datamation”, a computer mag-
azine that was published in print form in
the United States between 1957 and 1998
and still continues on the web [Wikipedia].
� ese articles were viewed as criticism of
IBM management and I was told by Mike
that for many years, IBM was trying to � nd
the person who wrote those articles. He
probably didn’t need to use his fake name
for “APL Blossom Time” but he did.

� e lyrics are a very accurate representa-
tion of the early years of APL. A discussion
of the writing of the song is included in
Mike’s “A Personal History of APL” [MO1].
I discussed earlier in this paper seeing Al
Rose “fed it a tape when he couldn‘t get a
phone line” at Syracuse.

At APL 81 in San Francisco, Larry Breed,
John Bunda, Diana Dloughy, Al O’Hara ,
Rob Skinner and I performed this song at
the banquet with 1100 people singing along.
Someone unknown to me took this picture
of us performing the song (see photo). A
YouTube video that contains the lyrics and

the audio of this performance is viewable at
[MO4]:

https://youtu.be/g4xvjfr297E

Figure: Larry Breed, John Bunda, Diana Dloughy,
Al O’Hara , Rob Skinner and James A. Brown

� e quality of the recording is not bad
considering that the recording was made
by Bob Armstrong sitting in the audience
using a hand held cassette recorder. We had
the lyrics on foils (transparencies that could
be projected by an overhead projector) and,
in the introduction to the song, I say how
we had a musical interlude between verses
so the foils could be swapped. I still have
the original foils.

Sometime a� er APL 81, I made a record-
ing of the song on a multitrack recorder
at my home with vocals by me and Mike
Wheatley, guitar by me and John Bunda,
Bass by me, and drums by Brian Du� . A
YouTube video that contains some histor-
ical pictures and this audio can be found at
[MO3]:

https://youtu.be/0zSauxkMxPo

15APL - Journal 1/2/2016

A Personal History of APL

As of November 2016 this video already
has over 60 views and is on its way to be-
coming a viral video. � ere is (at least) one
glaring error in the video. See if you can
spot it. I would like to claim that it is not
an error but rather copyright protection. At
one point in APL history, a company stole
the source code for VS APL and claimed
it as their own. Doug Aiton, a member of
the APL team, was charged with showing
that the code was stolen. � is was done by
cataloging the bugs in the product over the
years. By identifying which bugs were � xed
and which were not, Doug was able to pin-
point the date on which the code was stolen
within a couple of weeks. Should someone
steal my video of APL Blossom Time, I can
prove it by pointing out the errors. How-
ever, it’s not clear what intellectual property
is being protected. Mike Montalbono gave
us permission to use his words. � e music
was written in 1936 by Jimmy Dri� wood
for a song called “� e Battle of New Orle-
ans”. I assume the music in the public do-
main even though there was a popular ren-
dition of the song by Johnny Horton which
went to number 1 on the Billboard Hot 100
in 1959 [Wikipedia].

� e Future for me

A� er 31 years, I retired from IBM (as of this
writing 20 years ago) in 1996 because of a
headcount cut that would have caused oth-
ers in the team to be let go if I didn’t leave.
I’ve continued to work to move the array
programming paradigm represented by
APL into mainstream computing. Together
with James Wheeler, SmartArrays Inc. pro-
duced an add-in to C++, C#, and JAVA
that gives these languages array computing

capabilities similar to and beyond what
APL provides. With Mircea Morosan,
Morten Kromberg and Gitte Christensen,
NestedComputing has a possibility of mov-
ing array computing deeper into operating
systems and even into the hardware. Array
representation of data and array processing
may play a part in the emergence of a new
generation of computers that have � at ad-
dress spaces.

Conclusion

Warren Bu� ett once said “Always associate
yourself with people who are better than
you.” I certainly did this when I began to
associate with APL in 1967 and join the
group in 1969 and I’ve continued to do this
whenever the opportunity was available. It
was and is an honor and a pleasure to work
with APL and the talented people who are
drawn to APL.

Acknowledgements

So many people contributed to the design,
implementation, support and marketing
of APL and APL2 that it is impossible to
give even a partial list. Nevertheless, here’s
a few citations with apologies to those not
mentioned.

Of course Ken Iverson and Adin Falko�
must be mentioned. Even though Adin
and I had serious disagreements on the
language de� nition, he was always a good
manager and furthered my career. Many
people from the early APL group need to
be mentioned. Larry Breed showed me
that the work is important and, as I said, I
did not know he was my manager. Eugene

16 APL - Journal 1/2/2016

A Personal History of APL

McDonnell showed me how to use mathe-
matics in the design of notation. Trenchard
More never lost his cool and presented argu-
ments with equations not emotion. He had
a tremendous in� uence on the � nal de� ni-
tion of the APL2 language. His array theory
became the theoretical basis for the arrays
in APL2. Dick Lathwell showed me a cer-
tain indi� erence to the chain of command.
When I le� Syracuse and came back to IBM
at the IBM Philadelphia Scienti� c Center,
Dick was my manager. He was a great man-
ager and I believe we did signi� cant and
valuable work together, He was also fun to
be around. He advised me to take positions
strongly and then, if nobody objects, you’ve
won. If someone takes a strong counter-po-
sition and it has some merit, back o� . (� is
absolutely the right thing to do. You don’t
think so? Nevermind.) Dick was also very
in� uential in my personal life.

Garth Foster, my thesis advisor at Syra-
cuse University, was a guiding in� uence
throughout the creation of the � rst version
of what became APL2 as represented in my
thesis “A Generalization of APL” [BR1]. I
avoided many potential trouble areas be-
cause of his close attention. It was very
pleasing to me that Garth used my disser-
tation as study material for some classes
for several years a� er I graduated. Garth
has continued to host APL implementer’s
conferences at the Syracuse Minnowbrook
Conference Center.

As mentioned before, Bob Smith, when
he visited the Santa Teresa Lab, forced
me to face the fact that simplicity and ele-
gance are more important than consensus.
He continues to do exciting work with his

Nested Arrays Research System NARS2000
(http://www.nars2000.org/) which is in the
public domain.

My wife, Karen, (best friend for over 55
years) has been through it all with me. She’s
been to so many of my presentations that
she could probably give some of them. At
APL81, in Washington, D.C., she over-
heard someone pointing her out by saying
“� ere’s the other Mrs. Nested Arrays”. We
believe this was Bob Smith’s wife, Mary,
who was called “Mrs. Nested Arrays” by his
STSC collogues.

Finally, I must thank Axel Güth for be-
ing my mentor for technical, business and
marketing matters. � is began when we
� rst met and continues to this day. We still
have long phone calls to discuss technical
and business matters. He remains my only
colleague who has a separate mail folder in
my Email client:

Figure: � e author’s mail folder

� ere is no signi� cance that his folder
comes before the “Humor” folder. It is an
accident of alphabetical order.

References

[AB1] Abrams, P.; “An APL Machine”; PhD

17APL - Journal 1/2/2016

A Personal History of APL

Dissertation Stanford University; 1970
[BR1] Brown, J.; “A Generalization of APL”; PhD

Dissertation Syracuse University School
of Computer Science; 1971

[HE1] Hellerman, H.; “Experimental personal-
ized array translator system”; Commu-
nications of the ACM; Volume 7 Issue 7,
July 1964; Pages 433-438

[IV1] Iverson, K,& Brooks, P; “Automatic Data
Processing”; John Wiley and Sons; 1963

[IV2] Iverson, K., Falko� , A., Sussenguth E.;
“A Formal Description of SYSTEM/360”;
IBM Systems Journal; Vol. 3 No. 3, 1984

[IV3] Iverson, K.; “A Programming Language”;
John Wiley & Sons, Inc.; 1982

[IV4] Iverson, K.” Elementary Functions: An
Algorithmic Treatment”; Science Re-
search Associates;1966

[JS1] Various; “APL Quotations and Anec-
dotes”; http://www.jso� ware.com/pa-
pers/APLQA.htm

[MO1] Montalbano, M.; “A Personal History of
APL”; http://ed-thelen.org/comp-hist/
APL-hist.html

[MO2] More, T; “Notes on the Development of a
theory of Arrays”; IBM Philadelphia Sci-
enti� c Center Tech, Report No. 320-3016,
May 1973

[MO3] Montalbano, M. (Guest, J.C.L); “APL
Blossom Time”; YouTube video https://
youtu.be/0zSauxkMxPo

[MO4] Montalbano, M. (Guest, J.C.L); “APL
Blossom Time Lyrics”; YouTube video
https://youtu.be/g4xvjfr297E

[PO1] Post, Ed.; “Real Programmers Don‘t Use
Pascal”; Letter to the editor, Datamation
July1983

[SU1] Sushtek, L, “� e APL Programming Lan-
guage Source Code”, http://www.compu-
terhistory.org/atchm/the-apl-program-
ming-language-source-code/

[WI1] Whitehead, A.N., Russell, B; “Principia
Mathematica”; Cambridge at the Univer-
sity Press,1910.

 Appendix 1: APL Blossom Time Lyrics

APL Blossom Time
J. C. L. Guest (Michael S. Montalbano)

Back in the old days, in 1962,
A feller named Ken Iverson decided what
to do.
He gathered all the papers he‘d been writing
fer a spell
And he put them in a little book and called
it APL.

Well...
He got him a jot and he got him a ravel
And he revved his compression up as high
as she could go
And he did some reduction and he did
some expansion
And he sheltered all his numbers with a
ceiling and a � o‘

Now Sussenguth and Falko� , they thought
it would be � ne
To use the new notation to describe the
product line.
� ey got with Dr. Iverson and went behind
the scenes
And wrote a clear description of a batch of
new machines.

Well...
They wrote down dots and they wrote
down squiggles
And they wrote down symbols that they
didn‘t even know

18 APL - Journal 1/2/2016

A Personal History of APL

And they wrote down questions when they
didn‘t know the answer
And they made the Systems Journal in
nineteen sixty-fo‘

Now writing dots and squiggles is a mighty
pleasant task
But it doesn‘t answer questions that a lot of
people ask.
Ken needed an interpreter for folks who
couldn‘t read
So he hikedto Californ-i-a to talk to Larry
Breed.

Oh, he got Larry Breed and he got Phil
Abrams
And they started coding Fortran just as fast
as they could go
And they punched up cards and ran them
through the reader
In Stanford, Palo Alto, on the seventy
ninety oh.

Well a Fortran batch interpreter‘s a mighty
awesome thing
But while it hums a pretty tune it doesn‘t
really sing.
The thing that we all had to have to make
our lives sublime
Was an interactive program that would
let us share the time.

Oh, they got Roger Moore and they got
Dick Lathwell,
And they got Gene McDonnell with his
carets and his sticks,
And you should‘ve heard the uproar in the
Hudson River valley
When they saved the � rst CLEANSPACE
in 1966.

Well, when A1 Rose saw this he took a little ride
In a big station wagon with a type ball by
his side.
He did a lot of teaching and he had a lot of fun
With an old, bent, beat-up 2741.

Oh, it typed out stars and it typed out
circles
And it twisted and it wiggled just like a
living thing.
Al fed it a tape when he couldn‘t get a
phone line
And it purred like a tiger with its trainer
in the ring.

Now, there‘s much more to the story, but I
just don‘t have the time
(And I doubt you have the patience) for an
even longer rhyme. So I‘m ending this � rst
chapter of the tale I hope to tell
Of how Iverson‘s notation blossomed into
APL.

So..
Keep writing nands when you‘re not writ-
ing neithers,
And point with an arrow to the place you
want to be,
But don‘t forget to bless those early APL
sources
Who preserved the little seedling that be-
came an APL tree.

Dedicated to the pioneers of APL with re-
spect and a� ection by J. C. L. Guest

Appendix 2: Work History

1965-1968 IBM Owego, Owego New York

19APL - Journal 1/2/2016

A Personal History of APL

1968-1971 Syracuse University, Syracuse,
New York

1969-1971 IBM Research Yorktown
Heights, New York

1971-1974 IBM Philadelphia Scienti� c
Center, Philadelphia, PA

1974-1974 University of Pennsylvania
Moore School of Engineering, Phila-
delphia, PA Professor

1974-1978 IBM Palo Alto, Palo Alto, Ca.
1978-1981 IBM Research Yorktown

Heights, New York
1981-1997 IBM Palo Alto and IBM Santa

Teresa, San Jose, California
1999- present SmartArrays Inc, Ladera

Ranch, California
2004-2007 USAA, San Antonio, Texas
2010- present NestedComputing Corp,

Ladera Ranch, California

Appendix 3: Cast of Characters

� ese are people mentioned in the “Early
Years” portion of this paper with a few
words about what they did and what in� u-
ence they had one me. Apologies to the in-
numerable people who in� uenced my work
who did not get a mention.

▶ Ken Iverson
Creator of the original APL and was the
moral leader of the APL community for the
rest of his life.

▶ Adin Falko�
Adin‘s talk at an ACM meeting was my � rst
encounter with APL. He was my manager
at IBM several times over the years as I
moved back and forth from the east to the
west to the east to the west coast of the US.

▶ Edward Sussenguth
Collaborator on “� e Formal Description
of System 360“. To my knowledge, he had
no further in� uence on the APL world. I
never met him.

▶ Gerry Barrett
Operated the IBM 360 Model 50 on which
the � rst APL service ran.

▶ Bill Jones
Professor at Syracuse University who taught
at IBM Endicott. Responsible for me going
to Syracuse.

▶ Al Rose
First marketer of APL. Famous for his por-
table 2741 and the ability to give an APL
demo even when he could not attach to the
APL service.

▶ Mike Montalbano
Proponent of APL from the early days. Au-
thor of the lyrics of the song “APL Blossom
Time”. Member of the APL Development
group in Northern California.

▶ Phil Abrams
Wrote an early APL system with Larry
Breed at Stanford University. His PhD � e-
sis “An APL Machine” contained execution
schemes which I incorporated in the im-
plementation of APL2.

▶ Larry Breed
My � rst APL manager (unbeknownst to me)
and implementer of what became APL\360.
Moved to STSC (Scienti� c Time Sharing)
to work on their service. Later came back to
IBM and worked for me in Palo Alto.

20 APL - Journal 1/2/2016

A Personal History of APL

▶ Dick Lathwell
Implementer of many important aspects
of IBM APL (including shared Variables).
Was my manager at the IBM Philadel-
phia Scienti� c Center and became a close
personal friend.

▶ Seth Breidbart
Another summer employee at IBM Re-
search in Yorktown heights. He was known
for a dry sense of humor. If you said “� e
sun is hot today“ he‘d say “Yes. Several mil-
lion degrees”. He has continued to produce
interesting work both in the APL world and
other disciplines.

▶ Trenchard More
Creator of “Array � eory”. His theory and
his style of work had a tremendous in� u-
ence on APL2 and on me personally. He is
a true computer scientist who applies rigor
to everything he does.

▶ Herb Hellerman
Author of the � rst “Iverson Notation” com-
puter implementation PAT (Personalized
Array Translator System).

▶ Garth Foster
My PhD thesis advisor at Syracuse Uni-
versity. Instrumental in the spread of APL
and creator of the APL Quote Quad - the
APL periodical. He still runs APL Tech-
nical meetings at the Syracuse University
Minnowbrook Conference Center.

▶ Graham Driscoll
Member of the early APL group at IBM
Yorktown.

▶ Eugene McDonnell
Member of the early APL group at IBM
Yorktown. Gene was responsible for many
of the numerical primitives in the APL
language notable the circle functions and
computing on complex numbers.

▶ Alan Perlis
A computer scientist who was the � rst per-
son to receive the Turing Award. He was on
the team that developed ALGOL. As a pro-
fessor at Yale University, he was interested
in APL and wrote many papers including
“Should APL and Lisp be combined”. � e
answer was NO!

Contact:
Dr. James A.
Brown,
NESTEDCOM-
PUTING COR-
PORATION,
28 Drackert Ln,
Ladera Ranch,
CA 92694

21APL - Journal 1/2/2016

Forgotten APL Infl uencesForgotten APL Infl uences

Jon McGrew

Forgo� en APL Influences
Each of these conferences typically focus on the future, rather than simply reviewing
the past and rehash what we did years ago. I appreciate that. However, because this is
the 50th anniversary of APL, my presentation is going to talk about history.

I realized that there are a lot of things from the past for which APL really should get
high marks, some of which seem to be forgotten. � ese are places where APL has really
made its mark and made an in� uence in the world around us, but it may have been
forgotten that APL was ever involved with that. We all use instant messaging, word
processors, and spreadsheets… but are you aware that these all have links to APL? 1

Figure: “A Programming Language” textbook, 1962

� ere are so many dates that we could have
chosen for this —all of them reasonable. And
� nally, I realized that the � rst workspace that
the developers saved was still there, and for the
users of our time-sharing systems which we
were run ning there in Kingston, New York—
the people who would be receiving my news-
letter— I thought that the more important
point to them is the history of what they are
actually using, not necessarily the notation
that preceded that, so back in the mid-1970s
I chose workspace   as being
a starting point for APL:

1 Given as a multimedia presentation at the APL 50th Anniversary Conference at Böblingen, Germany on 29 November 2016

Before I get into that, I have a list of � ank
You’s, and one of the things that I will start
with is workspace  . I put
out an APL newsletter in the 1970s and
’80s, internal to IBM, called � e APL Jot Dot
Times, and in the mid-1970s, I wrote an ar-
ticle for it about the history of APL at that
time, and one question that I wanted to ad-
dress was, “When was APL ‘born’ ? ”

� at turned out to be a more complicated
question than I had expected, so � nding a
good answer became kind of a quest for a
while. � e problem was, should we con sider
its starting point to be when Ken Iverson � rst
started to come up with ideas for his nota-
tion, or when he started using the material
for teaching at Harvard, or when he sent
his seminal book to press (“A Programming
Language”[1,2,3]), or when the publisher � rst
made that book available to the public, or
when he joined IBM, or when his group � rst
started implementing it on the computer, or
when the � rst product was released, …or… ?

Forgotten APL Infl uences

22 APL - Journal 1/2/2016

Forgotten APL Infl uences




I have noticed that some people have also
pointed to the 1991 issue of the IBM Systems
Journal [4] which celebrated the 25th Anniver-
sary of APL, saying that this under scores
the validity of using 1966 as the starting
point for APL. I agree; thank you—that was
the issue which Ray Polivka and I created
for that event.

Michael S. Montalbano also had some dis-
cussion of workspace   in
his 1982 paper, “A Personal History of APL.”[5]

I’m not sure how many other people also
started looking at APL’s “date of birth” back
in the 1970s. But I was pleased to see that this
con ference observed that as the starting point
for APL.

•

So I am going to start with some back-
ground by just talking about some of the
people involved, with a huge � ank You to
each of them:

Figure: Original APL\360 Design Group

� is photo[6] shows members of the orig-
i nal APL\360 Design Group and probably
most of you know the players, but for those
of you who don’t, Ken Iverson and Adin
Falko� , of course, were the key players who
were in charge of designing and creating
the APL language, and those who actually
did the implementation work were Dick
Lathwell, Roger Moore, Phil Abrams, and
Larry Breed. � ey were the original devel-
op ment team for APL\360. � is is a picture
that was taken at the I. P. Sharp Conference
in Toronto in 1982.

…And by the way, just as an aside, does it
ever bother you how people sometimes get
rather arbitrarily cropped out of pictures?

Figure: Photobombed?! …“Which one is not like
the others? Which one doesn’t belong?”

A friend showed me this uncropped photo, [7]
and… well, okay, so it wasn’t actually all that
arbitrary in this case; I’ll have to admit that
that’s me skulking about in the background,
lurking there in the shadows— but I was
never part of the APL\360 Design Group.
� is photo was taken in the conference hospi-
tal ity suite, and I just happened to be coming
in for co� ee. I had no idea they were taking
a picture there that day, and I certainly had
no intention of photobombing anyone. Oops.

23APL - Journal 1/2/2016

Forgotten APL Infl uences

Another piece of history that I’ll show you
is this photo[8] from an ACM meeting in
Las Vegas in August of 1968. IBM put quite
a large booth together, and notice that there
are several IBM 2741 terminals[9,10] set up, each
with television cameras pointed at them and
monitors above them so that people could
see what was being typed on the page; this
was back before video display terminals were
as commonly available:

Front: Arnold, Sandra Pakin, Conroy, Adin Falko� ; Back: Crane,
B. Bergquist, T. Wilson, Van Guilderan, Al Rose, Mike Montalbano

Figure: APL at ACM meeting in Las Vegas in 1968

None of this so far has anything to do with
the Forgotten APL In� uences, but because this
is a 50th Anniversary Confer ence, I thought
that we ought to observe some of our collec-
tive APL back grounds.

•

■ My background

Here’s a little bit about my own background:

 • I am retired from IBM.

 • I have been using APL since 1971.

 • APL became my career in 1975.

 • I worked in the APL support team for a
large timesharing system in Kingston,
New York. We had users in 17 countries
using our machine.

 • I then worked on APL projects in the
group called Numerically Intensive Com-
puting. More about that in a bit.

 • I was a member of the APL Development
team at IBM during the development of
APL2.[11] The main group was in Califor-
nia, and we had part of that same depart-
ment (under the same manager) in Kings-
ton, New York. (We liked to consider it to
be Distributed Intelligence, but some may
disagree.)

 • Later, I worked in APL development at
Morgan Stanley on the Aplus[12,13] project,
which is their own in-house version of APL.

 • And so that I don’t misrepresent myself,
let me point out that I was not one of the
APL implementers— I didn’t work on
the internal code. I focused mainly on
the language itself, and attended many
of the design meetings and tried to argue
for what I believed in regarding language
design. My main function there was APL
programming and APL documentation.

24 APL - Journal 1/2/2016

Forgotten APL Infl uences

So in putting this together, one problem
that I had was, where do I draw the line on
history discussions? It’s hard to decide whe-
ther or not to include some of the APL ap-
plications, because there have been count-
less thousands of them, some of which are
truly notable. I’ll list just a few of them here
and then not cover them further in the rest
of the more detailed presentation:

 • Program trading: We all hear about how
the Wall Street people have program
trading, where the buying and selling is
done automatically, and most of that has
been done with APL.

 • Insurance companies have tradition-
ally used APL very heavily, to the point
where, as I visited insurance customers,
I was surprised to discover that many of
the actuaries thought that APL was the
Actuarial Programming Language, be-
cause it was so well suited to what they
needed that they assumed it was de-
signed for them.

 • Automated warehouse: Chuck Norcutt,
a coworker in my department, created
the code to keep track all of the products
in a major IBM warehouse. This project,
written entirely in APL, ran a large ro-
botically-automated warehouse in Ra-
leigh, North Carolina.

 • IBM mainframe configurator: Ordering
a mainframe computer is a very compli-
cated process. There are a lot of options,
many of which are mutually exclusive.
So for decades, that was all being han-
dled by a complex set of APL functions.

I understand that at one point they had
a team of 125 people working on rewrit-
ing it in a different language— and they
failed because it was just too complex.

 • Space shuttle: The landing of the NASA
space shuttle was being calculated for a
while by APL; the trajectories were be-
ing computed with APL functions from
the IBM Federal Systems Division.

And while any of these topics and many
others like them might be interesting (and
each could be a presentation of its own),
I’ll try to focus this discussion on areas
where the power of the language or unique
features within the language have made it
stand out, and places where other langua-
ges and processes have emulated what APL
did, rather than simply discussing applica-
tions, no matter how interesting they are.

A deciding point regarding material to be
included is: Does this cause you to say, “I
didn’t know that APL was involved with
that!”?

•

I have broken this presentation into two
sections, the � rst being “Places Where APL
was Early to the Game.” By this, I mean that
we will discuss approaches or technologies
which APL did not invent, but in which
APL was used to good advantage early on,
accomplishing things that other tools didn’t
or couldn’t accomplish in those days. And
the second section will be “� ings that APL
Pioneered,” for those things that actually did
originate with APL.

25APL - Journal 1/2/2016

Forgotten APL Infl uences

► Section 1: Places Where APL was
“Early to the Game”

■ Instant Messaging

Although I am certainly into technology, I
was somehow a late adopter when it came
to smart phones. My wife and I � nally traded
in our � ip phones for smart phones just two
years ago — and at that point, our son laughed
at us and thought, well, they’re � nally getting
into the 21st Century. “So I can actually send
you a ‘text’ now, right? Do you even know
what that is? …You’re almost starting to get
into the modern age.” And I said, “Ian, I’ve been
using instant messaging since 1971.” (A blank
stare from our son at this point, basically imply-
ing, � at’s back when the dinosaurs roamed
the earth, isn’t it?)

� is is what really got me thinking about
all of the things that APLers have used for
decades, and which we may have forgotten
were APL facilities years ago. � at was the
basis for starting this paper.

Messages used to be handled by an APL
system command and that was, by any
other name, instant messaging… or if you
prefer, text messaging. Messages were limi-
ted to 120 characters. As an example, let’s
send a note to “Bob,” where 265 is the port
number that he is on (which I would get
from the “” command):




His response might be:



I want to point out also that we used these
abbreviations, such as “BTW” for “by the
way” —none of this is really new— we used
that back in the mid- to late-1970s, and that
smiley face, or the frowning face in this case,
 …we used all this back then.

And the fact that we were sending those
text messages around the world back then
brought up another important aspect of this:

■ International PTT operations

PTT is “Postal, Telegraph, and Telephone”
service, and it is the agency within govern-
ments around the world that controls com-
munications. � ese days, we are very used
to the idea of just taking a cable and plug-
ging it into the wall — Ethernet or coax or
whatever you have, and talking to the whole
world — and it works so smoothly that we
don’t think about it. But that wasn’t always
the case. PTT has been a tightly-controlled
monopoly in most countries, and you could
not simply set up your own communication
across borders.

Now, in the mid-1960s, along comes APL
with this ni� y built-in messaging command,
and we want to support users around the
world. How do we do this? A company which
was instrumental in changing how PTT’s
handled messaging like this was I. P. Sharp
Associates (IPSA) in Toronto, and my hat is
o� to them for taking on (and winning!)
battles at the country level to make sure
that they could have a message command in
APL and send messages back and forth.[14]
� is all predated email, of course, so they did
groundbreaking work on setting up a world-
wide network, which included messaging.

26 APL - Journal 1/2/2016

Forgotten APL Infl uences

■ Packet switching

� e next part of this is that the I. P. Sharp
APL network itself was groundbreaking in
several ways. � ey developed one of the
early packet-switched networks.[15,16] � is
is simply a faster, more e� cient, and more
reliable means of sending data around the
world. � eir semi-private network was of-
� cially called IPSANET,[17,18] and it became
operational in May of 1976. � is was im-
plemented by Roger Moore, who was also
one of the original APL implementers at
IBM. So although APL didn’t invent packet
switching, it was really one of the very � rst
users of that technology on a grand scale.

■ Interactivity

Another part of APL’s power is its interac-
tivity. To get into that, let me � rst discuss
the Grace Murray Hopper Award.[19,20] � is
award is named for Rear Admiral Grace
Hopper[21] and it has been given out since
1971 by ACM (the Association for Com-
puting Machinery). � e award goes to a
computer professional who makes a single
signi� cant technical or service contribu-
tion before or at the age of 35. � is is a very
prestigious award.

Dick Lathwell, Larry Breed, and Roger
Moore each received the Grace Murray
Hopper Award in 1973.[22] But the thing
I want to point out here is that it was not
given to them for the APL language — there
was no discussion in their award that con-
gratulates them for the notation. Instead,
it was presented for “setting new standards
in simplicity, e� ciency, reliability and re-
sponse time for interactive systems.”[23,24] We

sometimes forget— everything is so inter-
active these days, we are used to hopping
on a computer and typing something and
immediately getting a response or going
onto a website and doing the same thing.
But it wasn’t always that way, and a lot of
the push in getting things to be interactive
started with APL. So as with other items in
this section, APL didn’t invent that, but it
was very early to the game.

Figure: An early Gilman and Rose textbook

A tribute to the new approach was the
Gilman and Rose textbook,[25] one of the
early textbooks on APL (1970). It was na-
med “APL\360: An Interactive Approach,”
because interactivity was the new and exci-
ting focus at that time, replacing batch ope-
rations, so in many ways like this, APL hel-
ped to usher in the new era of timesharing.

■ APL helped to usher in the era of
timesharing

In the mid-1960s, one of the early time-
sharing users was NASA. APL sounded like
a good tool for them, and they were eager
to start using it, but at the time, they had no

27APL - Journal 1/2/2016

Forgotten APL Infl uences

way to even dial into a computer system,
and back then, the phone companies didn’t
have much expertise in helping people with
data questions, and had no modems to pro-
vide to customers. So I was told that it was
Adin Falko� who drove 250 miles from IBM
Yorktown to the NASA Goddard Center near
Washington with ten Bell System 103A2 tele-
phone data set modems so that they could
get on-line with APL: [26]get on-line with APL: [26]

Figure: Phone company-supplied modems, c. 1962

APL provided timesharing in an era when
many people hadn’t yet heard of the con-
cept. In many areas, APL introduced peo-
ple to timesharing.

■ APL public libraries

Years ago, we became used to the idea that
the “APL public libraries” o� ered reposito-
ries of a wide variety of programs and in-
formation. Of course, many other systems
that any of us have worked with have code
repositories, and places where you can go
to get help information and so forth. But
the APL public libraries always went way
beyond that, o� ering not only code librar-
ies with routines such as Fast Fourier Trans-
form and Statistical Analysis, but also

in for ma tional sections such as on-line
phone books, ordering information for pub-
lica tions, news, email and more— just a lot
of things that are unrelated to the computer
system you’re using. Public Library work-
spaces were created on a huge range of topics.
� e Syracuse University Computing Center
had once commented that “the sheer vol ume
of material in this library system was over-
whelming.”[27]

Eventually—much later—this whole concept
and the work that so many people had put
into creating these varied facilities ended up
evolving into… websites.

■ Election coverage

Election coverage wasn’t an APL � rst; Uni-
vac had done this before, but it’s another
example of a place where APL was early in
getting into the game. CBS got election tally-
ing via a dial-up connection into an APL
time sharing system.

Figure: Election coverage with APL

I suspect that it was probably still back to
that early system in Philadelphia that the
APL Design Group used, and one of the
stories about this is that Walter Cronkite

28 APL - Journal 1/2/2016

Forgotten APL Infl uences

was delivering election results at one point,
and then he sort of stopped, and there was
some confusion— back in those days tele-
vision news didn’t have the � ow that it has
today, so when a problem came up, they
would sort of stop and look around. � e prob-
lem was that Walter Cronkite had acciden-
tally kicked the modem under the table
with his foot and the phone line was dis-
connected. So as he was trying to � ll time,
one of the technicians was crawling in un-
der the table in front of him to dial up the
APL system again and get it back on the air
so that he could get some more election re-
sults. …“And that’s the way it is.”

But even with an occasional glitch like this,
the point is that APL was very early in helping
to bring this kind of information to people.

■ Early public computer
demonstration

An early goal was just getting to show the
public what a computer is all about, and this
is a place where APL was involved very early.

Figure: IBM 2741 Selectric Terminal

A computer demonstration was set up at the
Franklin Institute Science Museum in Phi-
ladelphia, consisting of an IBM 2741 (Selec-
tric typewriter-style terminal)[9,10] connected
to the APL Design Group’s machine in the
middle of Philadelphia — and that’s proba-
bly the � rst view that people in Phila delphia
had of what a computer was all about. � ey
could actually get onto the 2741 and type in
APL expressions, so of course this was all
hands-on. Probably these days we wouldn’t
let people use a live connection into a deve-
lopment system, but somehow it all seemed
to work back then.

■ Computer Viruses

Do you remember the old “self-replicating
APL expressions”?[28] � e challenge was,
what is the shortest piece of APL code you
can type that will return itself — an expres-
sion that would return exactly what you
typed? It has to have some computing to it;
it has to have at least one function, so you
can’t just type “”, for instance. Here is an
example of an expression that returns itself:




Okay, there’s no practical point to it, just
some fun, and perhaps it’s a learning tool,
but as a self-replicating expression… well,
a variant of that —perhaps a distant cou-
sin of that (…or maybe its evil twin)— is a
virus. So when did the � rst computer virus
get created?

I read through a lot of articles on viruses
and one from the BBC talked about what
they claimed was the � rst computer virus,

29APL - Journal 1/2/2016

Forgotten APL Infl uences

and it dates it at 1983.[29] Another article
struck me as being interesting, which said
that in 1982, a student named Rich Skrenta
at Mount Lebanon High School in Pitts-
burgh, Pennsylvania wrote the “Elk Cloner”
virus[30]— that caught my attention because
that was my high school (…but no, I didn’t
write any viruses). Skrenta was in 9th grade
at the time and he created a virus that was
originally supposed to be a practical joke,
but it got out of hand, and that was what
this article claimed was the � rst virus, in 1982.

However, at a meeting of IBM’s APL ITL
(Interdivisional Technical Liaison) Com-
mittee[31] in California in 1976 or 1978, we
had discussions of computer viruses — and
that was a new term to us at the time. Larry
Smith was an IBM executive who had been
appointed to study this new phenomenon,
and he came to our conference and talked
about viruses. He surprised us by pointing
out that the � rst computer virus was writ-
ten in APL.

Now, I am pleased that I don’t have to re-
port that this virus was damaging — it was
not. He emphasized that this was a bene-
� cial virus. (…A what?) As he described
it, this procedure could replicate correc-
tions to other machines and it was there-
fore described as being analogous to a � u
shot, delivering a carefully-controlled virus
to protect you. Obviously, the correction it-
self had to be correct and he pointed out
that when they realized that other viruses
written in any language had the potential
to do harm, they really started studying this,
and he was appointed to be in charge of that
study. � ese discussions precede other virus
articles that we read about elsewhere.

■ Email

Although there are some differing opinions
as to when the first email system appeared,
credit has at times been given to an MIT in-
house system, which was developed in 1965.[32]
This was a very limited system, intended for
use just within their own campus. The other
con tender is a system created by Frank Bates III
of Mobility Systems, written in 1971.[34] These
were both very limited systems, with neither
one handling any commercial usage.

A discussion of “Internet in Its Infancy”[32]
tells us that “By the end of 1971 there were
23 computers at 15 different locations con-
nected to the ARPANET … The following
year [1972] the first true email software was
written, and email rapidly became the most
popular application on the network.” This
first “true” email system was created by
Larry Breed, one of the founders of Scien-
ti� c Time Sharing Corporation (STSC) in
Bethesda, Maryland. He created it in 1972,
and it was of course implemented in APL.
� is very successful email system was de-
scribed as the “APL*PLUS Message Pro-
cessing System Mailbox,” or known to their
customers simply as “the Mailbox.”[33]

In that same Internet history article, the
follow ing statements were made about the
STSC mailbox:

“In 1976, email was � rst used to gain pol-
it i cal power. Jimmy Carter and Wal ter Mon-
dale used email during their U. S. presi den-
tial campaign to co-ordinate their sched ules.
� ey won the election and Carter be came a
strong supporter of the internet. Each of
their emails cost about US$4 to send.”[32]

30 APL - Journal 1/2/2016

Forgotten APL Infl uences

White House Press Secretary Jody Powell
talked about how they used the STSC Mail-
box to help them with Jimmy Carter’s success -
ful 1976 U. S. Presidential campaign, saying:

“One of the constant problems in a poli-
tical campaign is caused by the fact that
things happen in rapid succession. The
candidate tends to be one place, most infor-
m a tion —the ‘good’ information— tends to
be another. We of course used the Mailbox
system to get that information and have
it available when the candidate and travel
party needed it. It saved us some time, it
saved us some money … I think you’d have
to say, all in all, that it worked out pretty
well.”[34]

� is same email system was also used by
I. P. Sharp Associates (IPSA) in Toronto;
these two “friendly-rival” APL timesharing
companies shared the same code for their
email. Leslie Goldsmith at Sharp rewrote
it to incorporate greater security. � at new
facility was then known to the Sharp APL
customers as “”.[34,35]

So, with just one or two very limited, in-
house systems preceding these early APL
mail systems, I can’t quite claim that APL
actually “invented” email, but in a practical
sense, maybe that is the case: APL systems
o� ered their users the � rst “real,” wide-
spread, global email service. And all of this
was available to APL users before the term
“e-mail” had even been coined.[36]

I had purchased a couple of APL terminals
to use at home (…yes, terminals, not PCs).
Starting in the mid-1970s, I was a guest
user of the Sharp APL system, and had an

email account there, and I thought, this is
terri� c —we should have something like this.
So although I never saw any of their code, I
created an email system[37] at IBM based on
the ideas that I got from the I.P. Sharp email
system.

Email was still quite rare in these days, so
following the Sharp system, mine ended up
also being another one of the � rst email sys-
tems (but obviously not the � rst)— and of
course, all written APL.

Now, since I am not an authority on the
STSC or IPSA mail systems, let me tell you
about the follow-on system that I created.

In support of our timesharing system, I
had a great manager at IBM, Bill Davis, who
gave me the freedom to work on the proj-
ects that I felt needed to be done, so having
seen the IPSA mail system, I decided email
would be a good thing to have.

It started as a personal project in 1979,
and I released it to the world in the summer
of 1981… and by “the world” I mean that
on Day One, our users in seventeen coun-
tries had email. � ey were all running on
our mainframe computers there in Kings-
ton, New York, so we had people in Japan,
Australia, Switzerland, Germany, France,
England, Argentina, Brazil —all around the
world— logging on to the Kingston system
to do their daily work, and now for the � rst
time, also to get their email.

Before I put my email system together, I
went to Toronto and met with Leslie Gold-
smith to ask him what I should be really fo-
cusing on if I create my own email system.

31APL - Journal 1/2/2016

Forgotten APL Infl uences

He said the Number One Priority needs to
be security— he said that they have com-
peting companies on their system, all using
email, and they have to know that it is se-
cure, that nobody else can see their email. So
that was one thing that I made a big point of
with my system, to ensure that every thing
was very secure and that nothing could get
misdelivered. � ere were even some new
features added to the APL interpreter itself
to ensure the security of the messages.

Now, � ash forward to today and look at
our current email providers: How secure
is email these days? If you were signing up
for this conference, you might go on to a
website with your credit card number to re-
serve a hotel— that may be � ne. But would
you send it by email? I would suggest not.

A lot of di� erent groups within IBM used
our email system, but I was particularly
interested in hearing that IBM Headquar-
ters in Armonk became interested in this
system and adopted it as their method of
sending out all of the IBM Corporate Com-
munications announcements around the
world. So all of the new product announce-
ments and executive promotions and IBM
earnings statements, and so forth —every-
thing that went up on the (physical) IBM
bulletin boards worldwide— came through
my email system.

All of these various APL-based email sys-
tems predated Compu Serve, just in case
anyone still remembers that (limited email
in 1989 and full support in 1992), AOL
email (1991), and Yahoo (1997). It greatly
predated Google (1998) and Google’s Gmail

(2004), and of course it predated personal
computers.

It also predated the commercial Internet
(early 1990s). Sharp had their own IPSANET;
so how did I send email around the world
at IBM? Well, IBM had its own global net-
work, called VNET[38] (mid-1970s), some por-
tions of which still exist, but of course the
Internet has taken over for a lot of that now.

An attempt to standardize email formats
came in September of 1973 from the Inter-
net Engineering Task Force (IETF),[39] but it
was then nearly a decade until SMTP (Simple
Mail Transfer Protocol) was introduced as
the standardized format for email messages,
using the now-familiar “@”-symbol in email
addresses (August 1982).[40]

All of this came a decade a� er many APL
users had already been using global email.

I’ll emphasize again that of course I realize
that I was certainly not the � rst one to cre-
ate an email system; I don’t claim to be, and
I don’t even claim to be the � rst one to cre-
ate it in APL code. I commend Larry Breed
and the others who got the APL world on-
line with email.

� e point of this discussion is that APL was
very early to the game with email. In fact, it
was early enough that with the � rst release
of my system I had to explain to people what

“email” was. Some people said to me, “Of
course I know what ‘mail’ is, but what is the ‘e’
part? …Does that somehow make it di� erent?”

Yes… yes, it does….

32 APL - Journal 1/2/2016

Forgotten APL Infl uences

■ Advanced DNA analysis

Getting into more current topics now, tech-
niques for DNA analy sis have been done
since the mid-1980s by many people, using
many di� erent tools and languages. But
imagine what could be accomplished if we
were to bring in a person who knows both
DNA and APL.

Charles Brenner is a renowned expert in DNA
analysis and in APL. In his words, he “lever-
ages the nimbleness of APL to identify crimi-
nals, fathers, World Trade Center and tsu-
nami victims, and determine race using DNA
in a world of fast-changing DNA identi� cation
technology.” He speaks of his DNA works as
“an application tailor-made for APL.”

In April 2013 he entered into a compe-
tition through NIST (National Institute of
Standards and Technology). Over a hund-
red entrants competed. Five problems were
presented, each having di� cult situations
for DNA analysis.

In his words, “One of the competitors (sup-
ported by years and millions of dollars of
government grants) got four problems right
and came close on the � � h, viewing it as a
three-person mixture, but in fact it was four.”

Brenner alone correctly analyzed all � ve
exercises, and furthermore correctly diag-
nosed one suspect as a mixed race person.

Brenner is doing this with Dyalog APL.[41]

He said, “We APLers try to be modest but it’s
not always easy. Sometimes there’s just not much
to be modest about.”[42-46]

► Section 2: � ings that APL
Pioneered

■ Uniformity of math notation

Iverson used to point out that when people say
that they had a hard time with math in school,
the all-too-common comment is that their
math teachers must not have been very good.
Ken has suggested that this may be misplaced
blame; part of the blame should be on the
notation itself, which is saddled with di� er-
ent rules for so many di� erent operations:

In conventional math notation, someti-
mes the function has to be on the le� (a);
sometimes it’s on the right (b). Sometimes
it’s on both sides (c). Sometimes we have
symbols that are scattered around each
other (d). Sometimes we have just one sym-
bol, but it goes part way around the num-
bers and semi-encloses it… and there may
not even be an o� cial symbol for the result
that we actually want; in this case, the re-
mainder (e). And for something as simple as
division, why isn’t there one standard way
to write it? We have several totally di� erent
ways of writing it, and all of them are in
very common usage (f). Ken thought this
could be improved, so he provided a means
of making math notation much more uniform,
and even apart from programming —just
for some one learning math— I think that this

33APL - Journal 1/2/2016

Forgotten APL Infl uences

is a wonderful step forward, and I’m hoping
that more attention can be put to this in the
future, just as part of basic learning in schools.

■ Introduction of new symbols

It was pointed out that Ken Iverson is the
only mathematician in history to put more
than two new symbols into common usage—
that is, of course, assuming that we consider
APL to be “in common usage.” It was Donald
McIntyre who made that observation, in his
paper, “From Hieroglyphics to APL”.[47,48]

Confucius has told us that “Signs and sym-
bols rule the world, not words nor laws.” (Okay,
although I have o� en seen this quoted, I can’t
actually vouch for its authenticity. …It might
be apocryphal, but it is food for thought.)

■ International language

I see APL as being the only truly internation al
programming language. (I am considering
only serious work-related languages, not toy
languages, and I am grouping APL’s deriv a-
tive languages, such as J and K, with APL.)

For an expression that I write for � nding
unique values (shown below),  is unique
(…I try to tell people that, by the way…),
then if I transfer this code to a user in ano-
ther country, he should be able to read the
code just as easily. A problem with other
languages is, because English has been used

so commonly for programming languages,
if you are in France or Germany and want
to do some programming, o� en you need
to learn some English � rst so that you know
the keywords in the operations. And if you
are in Greece or Russia or Japan or China,
for instance, you may have to gain some
familiarity with the Latin alphabet, which
we use here, in order to use a programming
language. Not so with APL.

And sure, although English is widely used
for technical work of all kinds, not all pro-
gramming languages use English; there are
languages that are localized for use in other
countries, of course — but then they are
also trapped in that language. APL makes
it much simpler — the code should always
be the same; only the comments and the
object names need to be in local languages.

With APL, whether I’m showing it to a
Spanish audience or French audience or Ja-
panese audience, we have no keywords, so
the code is going to be the same; the com-
ments may di� er, but the code itself should
always be the same. So I maintain that it’s
still the only truly international language.

You might say, ah, but how about if I get
an error message… that’s in English, isn’t
it? What do we do about that? Under APL2,
National Language Translation[49] lets you
specify what national language you prefer,
and that’s what is used for error messages:

Figure: APL coding with di� erent national languages

34 APL - Journal 1/2/2016

Forgotten APL Infl uences













System commands also can be entered in
your national language and the responses
from the system commands of course will
come back in that language. It was released
in over a dozen languages: Danish, English,
Finnish, French, Canadian French, German,
Hebrew, Italian, Japanese (double-byte),
Katakana (single byte), Norwegian, Portu-
guese, Spanish, and Swedish— with more
added later. And Help text is also in your
selected language.

Here’s just a bit of trivia: What do you
think the very � rst national languages were
that APL2 supported? Each of the langu-
ages that were released were speci� ed by
know ledgeable representatives from each
of those countries, so they were done pro-
perly (not just done by code developers sit-
ting down with a dictionary and trying and
translate things themselves). � ose of us in
the development group aren’t the experts in
those various national languages, so just for
testing, we had to have something else, and
therefore the � rst alternate languages to be
implemented were TexMex and Pig Latin…
with TexMex being things like, “
.”

■ Array processing

Some other languages support arrays, but
most commonly just for storage or for some
selected operations, and I guess I don’t need
to tell this audience, but having everything
work as array operations was a huge pio-
neering step for APL. No one else has truly
caught up yet.

■ First desktop Personal Computer

In discussing the � rst personal computer, some
de� nitions need to be established, because the
term “personal computer” hadn’t even been
used yet when the � rst of the machines that
we’ll discuss here were created. So let’s de� ne
a personal computer to be a desktop (or por-
ta ble) computer that’s primarily intended for
one person to use, rather than shared use.
� ese machines were commonly used in a
home, although small businesses of course
also found them to be a great tool.

In de� ning what a “personal computer” is,
IBM’s early-1970s mainframe offering called
VSPC (“Virtual Storage Personal Com put ing”)
doesn’t help to clarify matters. (As an aside,
VSPC did support APL, but this was a main-
frame offering, not a personal computer.)

So, what was the � rst desktop PC? � e
Apple II is commonly given the credit as
being the � rst desktop computer—but was it?
I started looking into that, and as a starting
point, let’s look at the Apple I computer,[50,51]
which was introduced in 1976.

� e Apple I wasn’t actually a full compu-
ter. It was sold as a hand-built circuit board

—just the board— at the Homebrew Computer

35APL - Journal 1/2/2016

Forgotten APL Infl uences

Club in Silicon Valley, California.[52,53,54] Steve
Wozniak built each of these boards himself,
by hand.[55] � e Apple I lacked a keyboard,
mon i tor, and storage, so in this � rst example,
some body got his own keyboard and built
a wooden case for it and so forth:

Figure: Apple I circuit board in a wooden case

And here’s an example of some work done by
a person who put their circuit board into a brief-
case, to con� gure it as a portable computer:

Figure: An Apple I circuit board in a briefcase

But again, this � rst o� ering was just a cir-
cuit board, not a complete computer. � en, the
following year, the Apple II computer came
out.[56–59] � is was a complete, ready-to-run
computer, and it was said to be the � rst desk-
top personal computer… but again, was it?

Figure: Apple II computer

Actually, the � rst personal desktop compu-
ter was the IBM SCAMP machine, built in
1973.[60] “SCAMP” meant “Special Computer
APL Machine Portable.” � is predated other
personal computers, and it ran only APL. It
may look vaguely familiar to some of you:

Figure: � e IBM SCAMP machine, open and closed

� is was the SCAMP and following are
some excerpts[61] from IBM management
as they donated the � rst SCAMP computer
to the Smithsonian Institution in Washing-
ton, DC, where it remained on display for
years. Following are statements made by
Paul Friedl, the manager in charge of the
development of the SCAMP:

“One of the reasons that I am pushing
to exhibit SCAMP is that we want eve-
rybody to know —contrary to popular
opinion— that the micro-computer was
not born in January 1975, and it was not
a technology that could only be done by
teenagers in garages.

“So how did the innovation of SCAMP
come about, especially within IBM, which
at that time was largely organized around
the concept of large centralized computers
and timesharing terminals? It happened
because IBM had previously created two
laboratories in California’s Silicon Valley.
Both of these labs were given free rein to

36 APL - Journal 1/2/2016

Forgotten APL Infl uences

seek and develop new systems and busi-
ness oppor tunities for use within several
years. � ese two facilities formed the ideal
environment for creating a revolutionary
device like SCAMP, the � rst IBM perso-
nal computer. All that was needed was a
direction.

“� e direction came in 1972 as Paul
Friedl —that’s me— a manager in PASC
[Palo Alto Scienti� c Center], conceived
the idea for developing SCAMP, a per-
sonal, portable IBM computer. To prove
feasibility for this idea, I presented IBM
executives with an ambitious plan to
build SCAMP within six months, and
demonstrate it on the desks of IBM exe-
cutives. At that time, there were no Apple
or Microso� Corporations, and the term

“personal computer” had not yet ente-
red into the popular lingo of computing.
Since 1972 was a highwater-mark in cen-
tralized mainframe computing, when the
IBM execs heard my plan, they were stun-
ned, and a� er a few seconds they spoke
out: ‘Wouldn’t that be something!’ And
that phrase became our project motto. …

“Created by Ken Iverson, APL is a beau-
tiful and extremely powerful programming
language which was in use throughout
IBM in the 1960s and ’70s. APL could do al-
most anything, but even more importantly,
APL changed the way you thought.”

So there are two myths which the SCAMP
developers sought to debunk: � e � rst per-
sonal computer was not created by two teen-
agers in their garage; it was created by IBM.
And the � rst personal computer didn’t run
BASIC; it ran only APL.

PC Magazine called the IBM SCAMP a
“revolutionary” concept and “the world’s � rst
personal computer.” And now you might
think, this was 1973 and they didn’t know
what was coming next month or next year,
and they didn’t really have a perspective
on what might be perceived as being rev-
olutionary later on — well, I want to point
out, this was a statement they made in their
1983 issue[62] —ten years later— so they had
plenty of perspective, and certainly recog-
nized it as being the � rst personal com-
puter, and indeed, revolutionary.

A� er the SCAMP prototype, but before the
IBM PC, and for that matter also before the
Apple II was the IBM 5100:[63,64]

Figures: � e IBM 5100 Computer

 � e 5100 could be purch-
ased as a complete system,
with an external tape drives
and a printer. Below, here’s
an ad showing a strong man,

37APL - Journal 1/2/2016

Forgotten APL Infl uences

holding his breath and grunting while he is
trying to hold this 50-pound machine up in
the air just long enough for the photo to be
taken:

Figure: Advertisement for the IBM 5100

� is magazine ad[65] said, “Now you can
have a computer right on your desk.” � at
had never been done before. It features “a
typewriter-like keyboard” (you probably
wouldn’t sell a lot of machines today by
telling people that); “a 1024-character dis-
play screen” (which is another way of say-
ing that it’s all character-based, so there’s
no graphics); “integrated tape drive” (again,
not a big selling point today, but certainly
was then); and “16k characters of memory,
expandable up to a maximum of 64k cha-
racters.” APL could easily have supported
more memory, and the designers wanted
to provide that for APL, but the Fortran
implementation that they were using only
supported 64k, and the planners insisted
that they be kept equal. Too bad.

� e ad goes on: “Also available is a com-
munications feature, which allows a 5100 to
be used as a terminal.” Our department got
two of these machines when they came out,

and they were wonderful as terminals. One
of the nice things was that we weren’t limi-
ted to 134 baud(!) anymore on the 2741
dial-up lines; now we could go to the high-
speed dial-up lines and run this baby at 300
baud— pretty amazing… for its day. It was
released in three models:

 • Model A was APL only
 • Model B was Basic only
 • Model C was a Combination machine:

APL and Basic

And as an aside, just for fun, do a Google
search sometime for IBM 5100 and John
Titor.[66] He has been discussed on many fo-
rums as a time traveler from 2036 who has
gone back to 1975 to get an IBM 5100 with
APL to solve problems in 2036. And appa-
rently they also want that highly-coveted 370
emulator that let them run APL.SV on the
5100. (…If he is at this meeting, by the way
—as he should be— please let me know; there
are a few things I’d like to discuss with him…).

At 50 pounds, the 5100 may seem pretty
heavy by today’s standards, but remember
that it replaced what would previously have
been half a ton of equipment. Its predeces-
sor was the IBM/1130.[67,68]

And no, that’s not on a desk, it is the desk:
to provide that for APL, but the Fortran
implementation that they were using only
supported 64k, and the planners insisted

Also available is a com-
munications feature, which allows a 5100 to

” Our department got Figures: Versions of the IBM/1130

38 APL - Journal 1/2/2016

Forgotten APL Infl uences

� e machine on the le� is an 1130 with the
expanded memory installed: � ere’s an ad-
ditonal three-foot cube bolted onto the le�
side, giv ing you an extra 8k of memory—
good for its time. And yes, it ran APL. � e � rst
time I saw APL running was on an 1130:

Figure: A brief sample APL session on an IBM/1130

It was Larry Breed and Charles Brenner who
ported APL to the IBM/1130.[69]

•

� ere were a few other machines which
need to be included in these discussions. A
Canadian company called Micro Computer
Machines brought out the MCM/70 com-
puter; it was demonstrated in 1973, but not
available until the end of 1974.[70–75] It had
an odd one-line plasma display, and was
further notable in that it ran only APL.

Figures: � e MCM/70 APL computer

Although it was predated by IBM SCAMP
machine, due to the limited availability of the
SCAMP, the MCM/70 can make a reason able
claim as being the � rst commercially-avail able
personal computer.

Although it was meant to be plugged in,
the MCM/70 was also unusual in that it had
a built-in battery, likely the � rst PC to o� er
that. So even if you somehow didn’t con-
sider it to be the � rst PC, it can certainly
claim the title of “the first truly portable
computer.”[76]

� is brought about another � rst: Zbigniew
Stachniak, the developer of the MCM/70, told
this story:[77]

“In August 1973, MCM sent Ted Edwards
to the APL Congress in Copenhagen with
a prototype of the MCM/70. What was

39APL - Journal 1/2/2016

Forgotten APL Infl uences

unusual about that MCM/70 was that
it was mounted in an attaché case and
was operating on batteries. Edwards was
not only able to board the plane with this
unusual device but also reviewed his pre-
sentation using that MCM/70 during the
flight to Copenhagen. This constitutes
an other ‘first’ for MCM: the first portable
computer operated during a flight. And,
of course, that ‘laptop’ was running MCM/
APL. The MCM/70 story was picked up by
the Danish daily Politiken on 1973-09-28.”

As an aside, if you haven’t read the stories on
Roger Hui’s “APL Quotations and Anec dotes”
webpage from Jsoftware,[78] I encourage you
to do so. There is a wonderful collection of
interesting and informative APL stories there.

� e MCM/70 also broke ground in another
area: Back in 1975, this was the machine that
intro duced APL to the Soviet Union. � e
Com puting Center of the Academy of Sci-
ences of the USSR purchased several of the
MCM/70 machines.[79–82]

Regarding other machines which have some-
times been called “the � rst PC,” you might hear
that the Altair 8800 [83,84] was the � rst PC. It
actually came a few months later, in 1975:

And then there was the intriguing Ampere
WS-1, an APL laptop produced by Nippon-
Shingo in Japan.[85–89] Although it isn’t a
contender for the � rst PC, it was a very early
laptop — probably even pre dating that term,
as they called it a “knee-top” machine. � is
very snazzy-looking APL-only laptop was re-
leased in 1985, with all of the sexy, curvace-
ous styling of a sleek sports car:

Figures: Ampere WS-1 APL laptop

And there’s a reason for that: � e Ampere
WS-1 APL laptop was designed by Kumeo
Tamura, who also designed the exterior lines
of the iconic 1970 Datsun 240z sports car:[90,91]

Figure: Design concept for the 1970 Datsun 240z

…So, sure, might as well make use of that
design a second time.

Unfortunately, the Ampere WS-1 failed its
FCC (Federal Communications Commission)
certi� cation for the U. S. marketplace, so it was
never able to be sold in the United States.

40 APL - Journal 1/2/2016

Forgotten APL Infl uences

So, regarding the � rst desktop PCs, here was
the progression:

Timeline:

• IBM SCAMP — APL only . . July 1973
• MCM/70 — APL only Nov 1974
• Altair 8800 Jan 1975
• IBM 5100 — APL and Basic . Sept 1975
• Apple I circuit board July 1976
• Commodore PET Jan 1977
• Apple II computer Apr 1977
• Radio Shack TRS-80 Aug 1977
• IBM PC (5150) Aug 1981
• Ampere WS-1 — APL only . . Nov 1985

•

All in all, APL played a larger role in the early
PCs than you might have expected. So why
wasn’t APL considered as the default language
for PCs? Well, to some extent, it was.

Prior to forming Microso� , Bill Gates had
already known about APL. Gates met with
Ian Sharp, Eric Iverson, and Bob Bernecky at
IPSA in the very early days of PCs, and
talked about using APL.[92] In February of
1976, Bill Gates announced via “An Open
Letter to Hobbyists” that Micro-So� (as it
was named back then) was working on
“writing 8080 APL and 6800 APL.”[93] Accor-
ding to Zbigniew Stachniak from MCM,
Gates stated that “Equivalence with the 5100
was my goal.”[94] Stachniak further stated, “It
was not until 1979 that Microsoft announced
its APL-80 interpreter for the Intel 8080 and
Zilog Z80 platforms. It was to be out in April
1979 and compatible with IBM’s APL.SV
software. But in the end the Microsoft APL-
80 proved to be vaporware and by the early
1980s, it was Microsoft’s BASIC and not APL

that was installed on the majority of personal
computers.” So in the end, the Microso� APL
products never saw the light of day.

� is is reminiscient of the VHS-versus-Beta
format wars. We can argue about which
system is better, but there is no doubt that
marketing plays a very important role in
public acceptance.

Personally, I think that it’s a good thing that
Microso� didn’t pursue APL further— be-
cause if they had created their own version
of APL, I have to think that it might have
ended up being vastly altered from what we
are accustomed to today, and due to volume,
might have become the accepted standard
for APL. I am pleased with the APL o� erings
and continued development that we are see-
ing these days, from multiple companies.

■ Early pocket calculators

Going down to the very small end, in about
1972, at a time when pocket calculators were
very new, Walt Nieho� at IBM in Endicott,
New York worked on creating a handheld APL
calculator. (To steal a line from the SCAMP
folks, “Wouldn’t that be something!”) I re-
member seeing the breadboarded proto type
for this, which � lled several feet of a rack cab-
i net in his lab in Endicott. But I’m sorry to re-
port that it did not get released as a product.

Just as an aside, the HP-35 calculator,[95]
launched in early 1972, was the � rst pocket
calculator to be released with scienti� c
functions, able to replace a slide rule; other
calculators of the time had only four func-
tions. I am told that Hewlett Packard de-
signed that calculator using APL\1130.[96]

41APL - Journal 1/2/2016

Forgotten APL Infl uences

■ Supercomputers

At the other end of the scale are the super-
computers. So what is a supercomputer,
and what drives it? In the mid-1980s, IBM
viewed a supercomputer as being their top-
end mainframe machines which were also
� tted with the IBM Vector Facility;[97,98,99]
which turned their largest mainframe into
a super computer. � e Vector Facility was
supported only by Fortran and APL, and
that made APL very popular with IBM.
And it was our Numerically Intensive Com-
puting Group in Kingston that created that.

And one of the really beautiful points
about using APL with a Vector Facility is
that no one’s code has to change at all — no
tweaks, no changes, and no recompiling…
come Monday morning, even old code just
runs faster. Fortran couldn’t o� er that.

■ APL in Cancer Research

In 1989, Prof. Dr. Hans-Peter Meinzer, at
the German cancer-research center DKFZ
(“Deutsches Krebsforschungszentrum”) in
Heidelberg, Germany, analyzed Magnetic
Resonance Images (MRI) and Computer
To mog ra phy (CT) scans with APL using
an IBM 3090 mainframe with the Vector
Facility.

Previously, the many images that are crea-
ted by the MRI (a) and CT scans (b) had

to be viewed individually (c), but using the
array-processing power of APL, Dr. Mein-
zer was able to produce highly-detailed 3-D
medical images (d):

Using sophisticated techniques of anato-
mic segmentation and semi-transparent
raytracing (e), Dr. Meinzer was able to
con struct 3-D rotating views (f) of a hu-
man head of a patient who had a cancerous
tumor:

Figures: MRI and CT scans and viewing of images

A demonstration video of this, called
“View ing the Invisible,” was shown at the
APL90 Conference in Copenhagen. John
Mizel, Michael Van Der Meulen, and my-
self, in IBM’s Numerically-Intensive Com-
puting group in Kingston, New York colla-
borated with Dr. Meinzer in creating this
video.[100] (I apologize for the low-quality
images shown here; Dr. Meinzer’s procedure
produced very high-quality images; however,
these images are the result of viewing a quarter-
century-old VHS tape on poor equipment.)

� e goal was to provide physicians with
better visualization techniques, giving them

42 APL - Journal 1/2/2016

Forgotten APL Infl uences

the means of seeing details which might
otherwise go undetected until the moment of
actual surgery.

� anks to the array-handling power of
APL and the increased processing power of
the Vector Facility, Dr. Meinzer’s work far
surpassed any medical imaging that had
ever been done prior to his work.

■ Complex TV graphics

In the 1980s, all of the major U. S. TV net-
works suddenly came on the air with fancy,
glistening, highly-re� ective 3-D � oating type
and images that � y in from the side with
swooshing sounds and so forth.

� ese days, we are so used to seeing fancy
3-D logos and images that we scarcely no-
tice them anymore, but back in the early
1980s, they were stunning. And they all
seemed to arrive at the same time. I re-
member thinking back then, how is it that
all of the television networks have come up
with that simultaneously?

Figures: Early TV logos and images made with APL

All of these logos appeared at about the same
time because they were all created by the same
person: It was Judson Rosebush,[101] using APL
and Fortran. His company was Digital E� ects,
Inc.[102] He was creating the graphics by ac-
tually dialing into the STSC APL system in
Bethesda from New York City, and doing it all
via dial-up time sharing (at 1200 baud). I was
told that one month his timeshar ing bill hit a
quarter of a million dollars, and at that point
he reportedly decided that it may be time to
get their own mainframe.[103]

By the way, regarding the spinning globe
that was used for the NBC Nightly News intro,
a little-known fun-fact is that their � rst pass
of the animation inadvertently had the globe
spinning in the wrong direction, so it had
to be reworked.[103]

In addition to creating the network logos
with APL, they also created a lot of TV com-
mercials for companies around the world
using APL-generated graphics. Digital Ef-
fects became so closely associated with this
work that its name became a noun for this
type of work.[102] Additionally, Digital Ef-
fects did some work on movies; in Xanadu,
complex scene transitions were created by
Judson Rosebush with APL.[104]

Judson Rosebush’s company, Digital Ef-
fects, was also one of four companies that
collaborated to create the movie Tron in
1982.[105] � is movie used APL heavily for
creating the visual e� ects. But although
Tron was a groundbreaking � lm, it was
never presented with an Oscar for techni-
cal achievement or special e� ects. Why? …
Because at the time, the Academy felt that

43APL - Journal 1/2/2016

Forgotten APL Infl uences

Tron had “cheated” by using computers to
create the scenes.[106]

Figure: Graphics from the TRON movie

■ Robust word processing

Part of my job has always been to write doc-
u men ta tion, so word processing has always
been important to me. Finding the tools to do
that has been di� cult at times. It’s so simple
now — we sit down at any PC, and we have
Microso� Word or whatever other tool you
want. � ese days, I have Adobe InDesign
on my machine; that’s a wonderful tool for
text processing and page layout. But before
Microso� Word came out in 1983… before
WordPerfect appeared, back in 1979… and
even before WordStar and TEX appeared in
1978 — how did anyone do it? Well, back then
there was [fanfare] � e APL Text Machine.[107]

� e APL Text Machine was originally
called APL text (pronounced “appletext”).
� e version that was � rst used in Yorktown
Heights was designed by Adin Falko� , and
Mordecai (Morty) Zryl was the APL pro-
grammer. Later enhancements were added
by Elizabeth Llanso. Maintenance was han-
dled by Don Orth starting in 1974.

� e APL Text Machine was used to pro-
duce the � rst APL\360 manual in late
1966 or early 1967. Agnes Carlin used it to

produce several of Ken Iverson’s books, e.g.,
Elementary Algebra.

� e APL Text Machine was started in the late
1960s, and formalized by the 1970s. It was
put out into the APL Public Library at that
point, so that any of our users could use it. It
really solved a lot of problems for us. With the
text machine we could —for the � rst time—
have the printer “automatically” switch fonts
back and forth. When we were writing APL
documentation, we had to have that. For
other people who were writing purely text
documents, perhaps this wasn’t as necessary
and you could get by with lesser tools, but
we needed something robust.

By the way, I put the word “automatically”
in quotes when I spoke of font switching,
because of course we were using the IBM
Selectric typing element[108,109,110] (or “type
ball”) back then, and so it wasn’t really au-
tomatic. We had to manually switch the
type ball but the point is that we could do it
now — the APL Text Machine � nally pro-
vided the commands for controlling it.

Our IBM 3211 system printer was set up
with an “APLFULL” print train, which con-
tained the APL font plus an upright caps
and lowercase text font, so the APL Text
Machine could print on that device without
any manual intervention, but the print qual-
ity wasn’t good enough for publications; it
was really just meant for daily reports. For
publications, I chose the Selectric termi-
nal with a high-quality single-pass Mylar
ribbon.

As an aside, I went onto the Web to get
a couple of pictures of Selectric type balls

44 APL - Journal 1/2/2016

Forgotten APL Infl uences

for the presentation, and I thought that it
was pretty funny that the picture of the APL
type ball was of course missing a couple of
teeth. � at seemed to always be the case; re-
member that? It would then misprint some of
the characters because the printer couldn’t
rotate it properly:

Figure: Selectric type balls

� ese days, we don’t even think about the
complexities involved in changing fonts; we
just switch fonts back and forth within Word
and then print it on pretty much any printer.
But it wasn’t always that easy.

Here’s a portion of a page from a news-
letter that I put together back in 1980. � is
was a Reference Issue of Jot Dot Times[111]
that showed how to use, in this case, Pic-
ture Format. It doesn’t look like it would be
that hard to type this up, except that we re-
alize that we need to switch fonts back and
forth — and not just within blocks of text,

but buried within paragraphs, too, so ma-
nual (physical) cut-and-paste was just far
too involved to consider:

� e highlighted part is in the APL font and
the rest is in a text font. � e APL Text Machine
let me enter codes to indicate all of the for-
matting that I wanted, including font swit-
ching. But having it stop and make me change
type balls back and forth, perhaps many times
in each paragraph, would be far too tedious,
so it had an easier approach: For each page,
it would print just the text portion � rst…

…and I would then roll the page back up to
the top, change the type ball, and press En-
ter, and it would print just the APL portion
of that page:

45APL - Journal 1/2/2016

Forgotten APL Infl uences

At this point you would hopefully end up
with the two parts lined up. Yes, there were
indeed some spoiled pages, but this is a
photo of a page from the actual newsletter
that I published, so they certainly could be
made to line up:made to line up:

So, we’re done now, right? Well, no, not
quite. Unlike more modern products like
MS Word, the APL Text Machine didn’t
have any provision for drawing the lines
around tables… not because that couldn’t
be programmed into it, but because back
then, we didn’t have any printers that could
draw the lines—everything was character-
based. So the lines had to be drawn in man-
ually, very carefully, using a technical-
illustrator’s pen (sometimes producing, of
course, some more spoiled pages):

It was quite a task to create APL manuals
years ago, but thanks to the APL Text Machine,
we � nally had the tools to do it. But there were
APL manuals before the APL Text Machine
was available, so you may ask, how did they
do it? � e answer is: poorly… very poorly:

� is is an APL manual from 1960s,[112] prior
to the APL Text Machine. Headings were just
done with underscored letters and the text
was all caps, because the APL type ball didn’t
have lowercase. Remember that we needed
to have text and APL symbols intermixed, and
prior to the APL Text Mach ine, the tools for
doing that just didn’t exist.

■ Commands within text

One of the things that came out of this for-
matting work is the introduction of read-
able commands within text. � e APL Text
Machine let you type your text and at the
beginning of the line, if you put in a delimiter

46 APL - Journal 1/2/2016

Forgotten APL Infl uences

character, like a slash, what came a� er that
was a command rather than text. We are very
used to that now with a lot of facilities we
use, but where did this come from? Well,
IBM Script was released in 1970, and it had
readable commands within text like that.
TEX was released in 1978, and it is certainly
based on this concept (and by the way, I
was told that Donald Knuth modeled TEX
in APL[113]). SGML (Standard General Markup
Language) was formalized in 1986, and its
cousin, HTML (HyperText Markup Lan-
guage) was released in 1993. All of these facil-
ities used this approach of embedding com-
mands within text. But before any of these
were available, we had the APL Text Machine.

A patent claim was presented to IBM in the
1980s claiming ownership of the concept of
embedding readable commands within text.
� at claim found its way to Adin Falko� who
then contacted me, and we were able to show
that SGML and TEX and others were predated
by the APL Text Machine.

■ On-line documents in court

From 1969 to 1982, the United States Govern-
ment pursued a major lawsuit against IBM
regarding the unbundling of so� ware and
services[114,115]; this 13-year antitrust lawsuit
was eventually dropped in 1982. But while it
was in process, it was a huge “you bet your
company” undertaking, where the IBM legal
team knew that the entire future of the IBM
Corporation was dependent upon the evi-
dence that they could present in court about
how IBM was conducting its business.

With so much documentation that could be
called up in court, they wanted to have on-line

access to documents in court, so that any of
perhaps millions of memos and other doc-
uments could be called up instantly. � ese
days, of course, any large case would do that,
but back then, it was a brand-new concept
to bring a terminal into the courtroom to
call up documents pertinent to the case.

� ey were doing all this with APL, and in
fact, were doing it on our Kingston APL time-
sharing system. Chuck Norcutt and I got in-
volved to assist with it. One of problems was
that the code had been written by a summer
student and it was too slow —that old story—
and so of course, we said, “Okay; let’s look
at the code.” Gasps from the legal team! You
can’t look at the code — it’s Registered IBM
Con� dential, and it’s very, very sensitive, so
absolutely not — no one can look at the code.
Well then, the big challenge became, how do
you speed up code when you’re not allowed to
look at it? Is that even possible?

Surprisingly, the answer to that is yes. It
turned out that an outgrowth of that court case
was an APL application that Chuck Norcutt
worked on in my department (with a little help
from me), called “Pareto.” Vilfredo Pareto
(1848–1923)[116] was an Italian economist,
and one of his � ndings was that around 80%
of the result of almost anything is generally
based on about 20% of its components. Apply-
ing his precepts to code, you turn on the
timer and then just run your application nor-
mal ly; its timing analysis will show you the
20% of the code that’s taking most of the time,
and then you can � x just that portion — the
rest of it isn’t nearly as consequential. � at
timing facility later became the APL Appli-
cation Performance Analysis[117,118] tool that
is now built-in to the APL2 interpreter.

47APL - Journal 1/2/2016

Forgotten APL Infl uences

■ If APL is so good, where are the
derivative languages?

Morgan Stanley’s Aplus[12] (or “A+”) was de-
rived from other APL systems— some people
call Aplus a derivative language, and some
people simply consider it to be another APL
dialect, just as Sharp APL and IBM APL2
di� er somewhat, but both are APL dialects.

Ken Iverson’s J language[119,120] (1990) was
a direct outgrowth of APL, and it answers the
question, if you had to do it all over again,
what would you change? He couldn’t simply
choose to change the APL language because
of the impact to the installed user base. J was
a brand-new language, to get around that
issue. And now K[121,122] (1993) is a further
derivative, and Kx[123] (1993) grew from that.

Additionally, ALGOL 68 was greatly in� u-
enced by APL, and even used the APL type
ball for coding. Matlab and Mathematica
are also systems which derived from APL.

Detouring for just a moment, perhaps you
have seen “Zippy the Pinhead ” comics in the

newspapers. Shown below is the “Symbol-
Minded” strip [124] where Zippy is trying to
� gure out what “J” is doing.

And now let’s talk about one more deriva-
tive of APL…

■ Spreadsheets

My � nal topic here is on spreadsheets: Where
do spreadsheets come from? If you look up
spreadsheets, for instance in Wikipedia,[125]
you’ll � nd some discussion of IBM’s Finan-
cial Planning and Control System[126] from
1976. It was used in 30 countries around the
world, and is considered to be an early spread-
sheet. It was written in APL, but the users
didn’t see APL — the underlying language
was hidden from them.

� e next step in this is credited to Dan
Bricklin.[127,128] He was an APL user[129] and
he reportedly admired the way that APL
could display a matrix of numbers on the
screen—but wouldn’t it be convenient if you
could run the cursor up and just overtype
a value that you wanted to change, rather

Figure: ‘ Zippy the Pinhead ’ contemplates J [124]

48 APL - Journal 1/2/2016

Forgotten APL Infl uences

than having to index into an array. And of
course you would then want to have it re-
calculated automatically. So while he was a
student at the Harvard Business School, he
developed VisiCalc[130,131] to solve some of
what he saw as limitations in APL. � is was
in 1979, and that one application is widely
credited with fueling the rapid growth of
the personal computer industry. From that
came Lotus 123 and Excel and others. He
was presented with the Grace Murray Hop-
per Award in 1981[22] for VisiCalc. I will point

out that spreadsheets are therefore a direct
outgrowth of APL.

■ Concluding remarks

APL’s mark extends far beyond just its no-
tation. APL has had some major in� uences
on many portions of the computer industry,
and in many cases, we don’t even recognize
features as being related to APL anymore,
but APL’s in� uences are all around us, even
in unexpected places. ■

Author: Jon McGrew, IBM (retired);
Kingston, New York; phone: +1-845-338-
5558, email: McGrew@TypeMatters.com

Jon McGrew has specialized in working
with various � avors of the APL program-
ming language throughout most of his ca-
reer, since 1971. His focus has been on the
design and development of the language
itself (as opposed to the underlying im-
plementations), and on applications. In
1981, McGrew developed one of the early
widespread email systems, with service to
seventeen countries; it was, of course, im-
plemented entirely in APL.

He has spent his career working as both
an APL programmer and a technical
writer, and is the author of widely-used
programming texts (“An Introduction to
APL2,”[132–135] and the IBM APL periodical
“Jot Dot Times”[37,111,136]). For many years,
McGrew hosted international APL con-
fer ences twice each year around the world,
as the Chairman of the ITL (Interdivi-
sional Technical Liaison) Committee on
the APL language.[31] He received the IBM
President’s Award for service to the IBM APL

community. He was Team Leader for APL
applications and customer support within
IBM. Later, he was an APL applications
writer within IBM’s Numerically Intensive
Computing group, providing support for
APL on supercomputers. He then joined
IBM’s APL Language Development group
under IBM’s Scienti� c Languages, where
he did applications programming for APL
products. On the side, he volunteered for
twelve years as the Production Editor for
SIGAPL’s “APL Quote Quad” under ACM
(the Association for Computing Machi-
nery), the programming community’s ma-
jor professional society.

Later, McGrew worked in the Aplus Devel-
opment and Support group[13] at Morgan
Stanley Dean Witter, supporting the Aplus
language[12] and developing and teaching
classes for their in-house version of APL.

McGrew is the 2001 recipient of the in-
dustry-wide Iverson Award (“� e Kenneth
E. Iverson Award for Outstanding Contri-
bution to the Development and Application
of APL”),[137] presented at the international
APL conference, held at Yale University.

49APL - Journal 1/2/2016

Forgotten APL Infl uences

■ Cited references, further
information, and notes

[1] A Programming Language, by Kenneth E. Iverson,

1962: John Wiley & Sons, Inc.; ISBN-10: 0471430145;

ISBN-10: 0471430145; Computer History Museum:

http://www.so� warepreservation.org/projects/apl/

Books/APROGRAMMING%20LANGUAGE/view

[2] A Programming Language, by Kenneth E. Iverson,

1962: John Wiley & Sons, Inc., ISBN:0-471430-14-5:

http://www.jso� ware.com/papers/APL.htm

[3] A Programming Language, by Kenneth E. Iverson,

1962: John Wiley & Sons, Inc.; ISBN-10: 0471430145;

ISBN-10: 0471430145; Amazon: https://www.amazon.

com/Programming-Language-Kenneth-Iverson/

dp/0471430145

[4] IBM Systems Journal, Volume 30, Issue 4, December

1991 (Ray Polivka, guest editor; Jon McGrew,

typography and production): http://ieeexplore.ieee.

org/xpl/tocresult.jsp?isnumber=5387434

[5] A Personal History of APL, Michael S. Montalbano:

http://ed-thelen.org/comp-hist/APL-hist.

html#PersonalHistory

[6] APL Design Group photo is from the Computer

History Museum in California, http://www.

computerhistory.org/atchm/wp-content/

uploads/2012/10/iverson_team.jpg

[7] APL Design Group photo, outtake version: http://

lathwellproductions.ca/wordpress/2010/04/21/

unsung-jedi-warrior/

[8] ACM Conference photo is from the collection of

Raymond P. Polivka

[9] IBM 2741 terminal: https://en.wikipedia.org/wiki/

IBM_2741

[10] IBM 2741 terminal: http://www.text� les.com/

bitsavers/pdf/ibm/27xx/GA24-3415-3_2741_Data_

Terminal_Aug72.pdf

[11] IBM APL2: http://www-03.ibm.com/so� ware/

products/en/apl2

[12] Morgan Stanley’s Aplus language: http://www.

aplusdev.org

[13] Morgan Stanley’s Aplus development and support

team: http://www.aplusdev.org/Develop/devTeam.

html

[14] I P Sharp Associates and the Telephone Monopolies,

Ian P. Sharp: http://rogerdmoore.ca/INF/EIPSPTTa.

html

[15] Packet switching: https://en.wikipedia.org/wiki/

Packet_switching

[16] Packet-Switching History, Roger D. Moore: http://

rogerdmoore.ca/PS/

[17] IPSANET: https://en.wikipedia.org/wiki/IPSANET

[18] IPSANET Documents, Roger D. Moore: http://

rogerdmoore.ca/INF/

[19] Grace Murray Hopper Award: https://en.wikipedia.

org/wiki/Grace_Murray_Hopper_Award

[20] Grace Murray Hopper Award, ACM: http://awards.

acm.org/hopper

[21] RADM Grace Hopper: https://en.wikipedia.org/wiki/

Grace_Hopper

[22] Grace Murray Hopper Award Recipients: https://

en.wikipedia.org/wiki/Grace_Murray_Hopper_

Award#Recipients

[23] Grace Murray Hopper Award text: https://

en.wikipedia.org/wiki/Richard_H._Lathwell

[24] Grace Murray Hopper Award annoucement letter for

Richard Lathwell, from ACM Awards Committee

Chairman, American Institute of Physics, May 31,

1973: https://aprogramminglanguage.� les.wordpress.

com/2010/02/hopperdad.jpg

[25] APL\360: An Interactive Approach, John Wiley and

Sons, Inc., Leonard Gilman and Allen J. Rose,

1970-01-01, ISBN-13:9780471300205, 335 pgs: http://

www.so� warepreservation.org/projects/apl/Books/

GillmanAndRose

50 APL - Journal 1/2/2016

Forgotten APL Infl uences

[26] Early time-sharing systems and APL, Eugene

McDonnell, � e Socio-Technical Beginnings of APL,

APL Quote-Quad, Volume 10, Number 2, 1979-12:

http://www.jso� ware.com/papers/eem/socio1.

htm#early

[27] Management of APL public libraries, Marguerite A.

Boisvert, Systems Analyst, APL ’79 Proceedings of

the international conference on APL: part 1,

pp 381–384: http://dl.acm.org/citation.

cfm?doid=800136.804491

[28] Self-replicating APL expressions: http://gopher.quux.

org:70/Archives/usenet-a-news/NET.lang.

apl/82.04.26_uwvax.343_net.lang.apl.txt

[29] First computer virus, per BBC: http://news.bbc.

co.uk/2/hi/technology/8366703.stm

[30] Elk Cloner virus: https://en.wikipedia.org/wiki/

Elk_Cloner

[31] Proceedings of the IBM ITL (Interdivisional

Technical Liaison) Committee on the APL language,

Computer History Museum, http://www.

computerhistory.org/collections/catalog/102734222

[32] Internet in its infancy, ActewAGL Retail, ABN 46 221

314841, https://web.archive.org/

web/20110227151622/http://www.actewagl.com.au/

Education/communications/Internet/

historyOf� eInternet/InternetOnItsInfancy.aspx

[33] Mailbox, � e STSC Story: It’s About Time: https://

www.youtube.com/watch?v=BSkxr6rQU0Y

[34] 666 BOX, APL Quotations and Anecdotes, Roger Hui:

http://www.jso� ware.com/papers/APLQA.

htm#666box

[35] 666 BOX was the I. P. Sharp mail system: https://

en.wikipedia.org/wiki/I._P._Sharp_Associates

[36] Will You Love Electronic Mail or Hate It? Computer

Decisions, Volume 11, Hayden Publishing Company,

December 1979, pg 47

[37] � e APL Jot Dot Times: An IBM in-house newsletter

created by Jon McGrew; “Introducing the APL

Mailbox,” Summer 1981, 64 pages

[38] IBM VNET: https://en.wikipedia.org/wiki/IBM_

VNET

[39] Standardizing Network Mail Headers, IETF Network

Working Group, RFC 561, September 1973: https://

tools.ietf.org/html/rfc561

[40] Simple Mail Transfer Protocol (SMTP), IETF Network

Working Group, RFC 821, August 1982: https://tools.

ietf.org/html/rfc821

[41] Dyalog APL: https://www.dyalog.com/

[42] � ere’s DNA Everywhere, SIGPLAN Chapter on Array

Programming Languages, Charles Brenner: http://

www.sigapl.org/CharlesBrennerDNATalkIntro.php

[43] Charles Brenner, DNA Identi� cation Technology and

APL: http://dna-view.com/DNAtechID.htm

[44] � ere’s DNA Everywhere— an Opportunity for APL,

Charles Brenner: http://video.dyalog.com/

Dyalog14/?v=oXlP3r6PzeE

[45] Charles Brenner (mathematician): https://

en.wikipedia.org/wiki/Charles_Brenner_

(mathematician)

[46] Charles Brenner, A Conversation With Charles

Brenner; A Math Sleuth Whose Secret Weapon Is

Statistics, NY Times, Science section, By Claudia

Dreifus, Aug. 8, 2000: http://www.nytimes.

com/2000/08/08/science/conversatipon-with-charles-

brenner-math-sleuth-whose-secret-weapon-statistics.

html

[47] Language as an Intellectual Tool: From Hieroglyphics

to APL, Donald B. McIntyre, IBM Systems Journal,

Volume 30, Issue 4, December 1991, pp 554–581:

http://ieeexplore.ieee.org/

document/5387447/?arnumber=5387447

[48] Language as an Intellectual Tool: From Hieroglyphics

to APL, Donald B. McIntyre (1991), IBM Systems

Journal. 30 (4): 554–581: http://domino.research.ibm.

com/tchjr/journalindex.nsf/

e90fc5d047e64ebf85256bc80066919c/

9c834f5a16efa82085256bfa00685c72!OpenDocument

[49] National Language Translation: APL2 Programming:

Language Reference, SH21-1061-01, February 1994,

pg 314; http://publibfp.boulder.ibm.com/epubs/pdf/

h2110611.pdf

51APL - Journal 1/2/2016

Forgotten APL Infl uences

[50] Apple I computer: http://www.computerhistory.org/

revolution/personal-computers/17/312/2312

[51] Apple I computer: https://en.wikipedia.org/wiki/

Apple_I

[52] Homebrew Computer Club: https://en.wikipedia.org/

wiki/Homebrew_Computer_Club

[53] Homebrew Computer Club: http://www.

computerhistory.org/revolution/personal-

computers/17/312

[54] Homebrew Computer Club: http://www.

oldcomputers.net/applei.html

[55] Steve Wozniak Debunks One of Apple’s Biggest Myths:

https://www.youtube.com/watch?v=pJif4i9NRdI

[56] Apple II computer: http://www.computerhistory.org/

revolution/personal-computers/17/300

[57] Apple II computer: https://en.wikipedia.org/wiki/

Apple_II

[58] Apple II computer: https://en.wikipedia.org/wiki/

Apple_II_series

[59] Apple II computer: http://oldcomputers.net/appleii.

html

[60] SCAMP: http://www-03.ibm.com/ibm/history/

exhibits/pc/pc_1.html

[61] SCAMP presentation to the Smithsonian Institute,

Paul Friedl, IBM Corporation SCAMP - � e 1st IBM

personal computer; the missing link in the PC’s past! :

https://www.youtube.com/watch?v=L_BWL7vCaa0

[62] World’s � rst PC: PC Magazine, Vol. 2, No. 6,

November 1983, Zi� -Davis Publishing, “SCAMP:

� e Missing Link in the PC’s Past?”, pp 191–197:

https://books.google.com/books?id=

q8fwTt09_MEC&pg=PA196&lpg=PA196&dq=

PC+Magazine,+November+1983+scamp

[63] IBM 5100: http://www-03.ibm.com/ibm/history/

exhibits/pc/pc_2.html

[64] IBM 5100: https://en.wikipedia.org/wiki/IBM_5100

[65] IBM 5100 ad: http://bluefaqs.com/2009/09/35-

vintage-tech-ads/

[66] John Titor and the 5100: https://en.wikipedia.org/

wiki/John_Titor

[67] IBM 1130 computer: https://www-03.ibm.com/ibm/

history/exhibits/1130/1130_intro.html

[68] IBM 1130 computer: https://en.wikipedia.org/wiki/

IBM_1130

[69] How We Got to APL\1130, Larry Breed, Vector

(British APL Association), 22 (3),August 2006, ISSN

0955-1433: http://vector.org.uk/art10001190

[70] MCM/70, How Toronto invented the PC, then forgot

about it: http://spacing.ca/toronto/2015/04/15/

toronto-invented-pc-forgot/

[71] � e MCM/70 Microcomputer, by Zbigniew Stachniak

(developer): http://www.xnumber.com/xnumber/

MCM_70_microcomputer.htm

[72] Inventing the PC: � e MCM/70 Story, book, by

Zbigniew Stachniak (developer): https://www.

amazon.com/Inventing-PC-MCM-70-Story/

dp/0773538526

[73] Inventing the PC: � e MCM/70 Story, review, David

C. Brock: https://muse.jhu.edu/article/476817

[74] � e Making of the MCM/70 Microcomputer, by

Zbigniew Stachniak, IEEE Annals of the History of

Computing, April–June 2003, pp. 62–75: https://

ia801300.us.archive.org/10/items/MCM01203059/

MCM-01203059.pdf

[75] MCM/70, Core 4.1, Computer History Museum,

September 2003, pp 6–12: http://s3data.

computerhistory.org/core/core-2003.pdf

[76] Introduction of the MCM/70, the First Truly Portable

Computer & the First Truly Usable Microcomputer

System, Jeremy Norman, History of Information:

http://www.historyo� nformation.com/expanded.

php?id=4806

[77] MCM/70 used on a plane, Zbigniew Stachniak, from

APL Quotations and Anecdotes by Roger Hui: http://

www.jso� ware.com/papers/APLQA.htm#MCM1973

[78] APL Quotations and Anecdotes, Jso� ware, compiled

and edited by Roger Hui: http://www.jso� ware.com/

papers/APLQA.htm

52 APL - Journal 1/2/2016

Forgotten APL Infl uences

[79] MCM/70 и другие: из истории персональных

компьютеров (“MCM/70 and others: from the

history of personal computers”), 08.09.2013: http://

itc.ua/articles/mcm-70-i-drugie-iz-istorii-

personalnyih-kompyuterov/

[80] APL in Russia, Russia: a future great APL power?,

Erkki Juvonen, ACM SIGAPL APL Quote Quad -

Russian focus issue, Volume 22 Issue 2, Dec. 1991,

pp 1–2: http://dl.acm.org/citation.

cfm?doid=130647.130649&

CFID=797566137&CFTOKEN=80570900

[81] APL in Russia, Nuclear power plant diagnostics in

APL, Alexander O. Skomorokhov, Institute of Physics

and Power Engineering, 1 Bondarenko Square,

Obninsk, Kaluga Region 249020, USSR, APL ’91

Proceedings of the international conference on APL

’91, pp 289–300: http://dl.acm.org/citation.

cfm?id=114087&

CFID=797566137&CFTOKEN=80570900

[82] APL in Russia, � e SovAPL award for excellence in

APL, Alexander Skomorokhov, Chairman of SovAPL,

� e Russian Chapter of ACM SIGAPL, ACM SIGAPL

APL Quote Quad, Volume 31 Issue 1, 09/01/2000, pp

29–30: http://dl.acm.org/citation.cfm?id=570511&

CFID=797566137&CFTOKEN=80570900

[83] Altair 8800, Popular Electronics, Jan 2, 1975, pp

33–38: http://www.americanradiohistory.com/

Archive-Poptronics/70s/1975/Poptronics-1975-01.

pdf

[84] Altair 8800, Setup and Users Manual, vintage

computer information, published by Briel Computers,

July 2010: http://www.hackersinformation.com/

uploads/1/9/1/6/19169525/micromanual.pdf

[85] Ampere WS-1: https://� .wikipedia.org/wiki/Ampere_

WS-1 (Finnish)

[86] � e Amazing Ampere WS-1 (1985), Norbert

Landsteiner: https://plus.google.

com/+NorbertLandsteiner1/posts/VJYZrHZg7Zy

[87] Ampere WS-1, Classic Tech, Vintage computers and

related technology, Ampere Inc. (Tokyo, Japan):

https://classictech.wordpress.com/computer-

companies/ampere-inc-tokyo-japan/

[88] Ampere WS-1: http://www.old-computers.com/

museum/computer.asp?st=1&c=66

[89] Ampere WS-1, � e Computer Chronicles— Japanese

PCs (1984): https://www.youtube.com/

watch?v=rbh1XP4kCT4

[90] � e Guy Who Designed the Datsun 240Z Also

Designed � is Fascinating Laptop, Jalopnik: http://

jalopnik.com/5929191/the-guy-who-designed-the-

datsun-240z-also-designed-this-fascinating-laptop

[91] Datsun 240Z Exterior Designer “Kumeo Tamura”:

https://www.youtube.com/watch?v=ju7RfHhTI1c

[92] Bill Gates meeting at IPSA, APL Quotations and

Anecdotes: http://www.jso� ware.com/papers/APLQA.

htm#Bill_Gates

[93] An Open Letter to Hobbyists, Homebrew Computer

Club Newsletter, Vol 2, Issue 1, February 3, 1976, pg

2, by Bill Gates; DigiBarn Computer Museum: http://

www.digibarn.com/collections/newsletters/

homebrew/V2_01/homebrew_V2_01_p2.jpg

[94] APL: Good for the Brain, article by Bill Gates,

Electronics Today International Magazine (Canada),

Vol. 3 No. 3, March 1979, by Steve Braidwood

(editor), March 1979

[95] Hewlett-Packard HP-35 scienti� c calculator: https://

en.wikipedia.org/wiki/HP-35

[96] Hewlett-Packard HP-35 scienti� c calculator designed

with APL\1130: Personal email discussion with

Richard Lathwell, 2017-01-04

[97] IBM Vector Facility: http://www-03.ibm.com/ibm/

history/exhibits/mainframe/mainframe_FS9000.html

[98] IBM Vector Facility: Large Systems Technical Support,

IBM 3090 Processor Complex: Planning and

Installation Reference, GG66-3090-01, November

1987, http://chiclassiccomp.org/docs/content/

computing/IBM/Mainframe/Hardware/System/

GG66-3090-01_3090ProcComplexPlanning

InstallationRef_Nov87.pdf

53APL - Journal 1/2/2016

Forgotten APL Infl uences

[99] IBM Vector Facility: https://en.wikipedia.org/wiki/

IBM_3090#Vector_facility

[100] Prof. Dr. Meinzer, DKFZ: Descriptions taken

fromvideotape liner notes created by Jon McGrew;

video program created by John M. Mizel, editing by

Jon McGrew and Mike Van Der Meulen; IBM

Numerically-Intensive Computing, February 1990.

� e video was created for the IBM NYC exhibit

entitled, “100 Years of Computing.”

[101] Judson Rosebush, Wikipedia: https://en.wikipedia.

org/wiki/Judson_Rosebush

[102] Digital E� ects, Inc., Wikipedia: https://en.wikipedia.

org/wiki/Digital_E� ects_(studio)

[103] Digital E� ects, Inc., from comments made at the

presentation by Judson Rosebush at the I. P. Sharp

Conference, Toronto, 1982

[104] Xanadu movie trailer, 1980: https://www.youtube.

com/watch?v=WNcUv1q2JAs&t=23s

[105] Tron movie, 1982, Film Opening at Flynn’s Arcade:

https://www.youtube.com/

watch?v=P7LclSGFOFg&t=12s

[106] Tron movie, 1982, � e Making of Tron, Director’s

comments: https://www.youtube.com/

watch?v=pr2LvJUI6ZY&t=1s

[107] APL Text Machine history: Personal email discussion

with Richard Lathwell, 2017-01-04

[108] Selectric typing element: http://www-03.ibm.com/

ibm/history/exhibits/vintage/vintage_4506VV2122.

html

[109] Selectric typing element: https://en.wikipedia.org/

wiki/IBM_Selectric_typewriter

[110] Selectric typing element: http://www.computerhistory.

org/collections/catalog/102662795

[111] � e APL Jot Dot Times: An IBM in-house newsletter

created by Jon McGrew; “Special Reference Issue,”

Fall 1980, 98 pages, Computer History Museum:

http://www.so� warepreservation.org/projects/apl/

Papers/APLJotDotTimes

[112] Pre-APL Text Machine manual, APL\360 Language

and Time Sharing System, 1968: http://bitsavers.

trailing-edge.com/pdf/ibm/apl/APL_360_Features.

pdf

[113] Donald Knuth usage of APL: Personal email

discussion with Richard Lathwell, 2017-01-04

[114] IBM antitrust lawsuit; Wikipedia, History of IBM:

https://en.wikipedia.org/wiki/History_of_

IBM#1969:_Antitrust.2C_the_Unbundling_of_

so� ware_and_services

[115] IBM antitrust lawsuit; New York Times, February 15,

1981, U.S. vs. I.B.M.: http://www.nytimes.

com/1981/02/15/business/us-vsibm.html

[116] Vilfredo Pareto: https://en.wikipedia.org/wiki/

Vilfredo_Pareto

[117] APL2 timing facility, TIME— Application

Performance Analysis: APL2 User’s Guide, IBM,

SC18-7021-23, 1994/2017, pp 287–288; http://

publibfp.boulder.ibm.com/epubs/pdf/c187021n.pdf

[118] APL2 timing facility, TIME Workspace: APL2 User’s

Guide, IBM, SC18-7021-22, 1994/2017, pp 547–549;

http://publibfp.boulder.ibm.com/epubs/pdf/

c187021n.pdf

[119] J language: http://www.jso� ware.com/

[120] J language: https://en.wikipedia.org/wiki/J_

(programming_language)

[121] K language, Vector, Vol. 10 No. 1, July 1993, pp

74–79: http://archive.vector.org.uk/art10010830

[122] K language, Wikipedia: https://en.wikipedia.org/

wiki/K_(programming_language)

[123] Kx Systems, 1993: https://kx.com/

[124] Zippy the Pinhead, © 1998, Bill Gri� th; published on

September 28, 1998; Used here through the

permission of the artist: https://en.wikipedia.org/

wiki/Zippy_the_Pinhead

[125] Spreadsheet, Wikipedia: https://en.wikipedia.org/

wiki/Spreadsheet

[126] Spreadsheet; IBM Financial Planning and Control

System (FPCS), Wikipedia: https://en.wikipedia.org/

wiki/Spreadsheet#IBM_Financial_Planning_and_

Control_System

54 APL - Journal 1/2/2016

Forgotten APL Infl uences

[127] Dan Bricklin’s website: http://bricklin.com

[128] Dan Bricklin, Wikipedia: https://en.wikipedia.org/

wiki/Dan_Bricklin

[129] Dan Bricklin on APL; Bricklin on Technology, Dan

Bricklin, John Wiley and Sons, Inc., 2009, ISBN-13:

978-0470402375, pp 370, 401–404, 423; http://www.

barnesandnoble.com/w/bricklin-on-technology-

daniel-bricklin/1102658682?ean=9780470402375

[130] VisiCalc background, from Dan Bricklin’s website:

http://bricklin.com/visicalc.htm

[131] VisiCalc: https://en.wikipedia.org/wiki/VisiCalc

[132] An Introduction to APL2 (Installed User Program),

IBM, Jon McGrew, June 1982, SB21-3039-0

[133] An Introduction to APL2, APL2 Version 1 Release 2

(Program Product), IBM, Jon McGrew, December

1985, SH20-9229-1, Computer History Museum:

http://www.computerhistory.org/collections/

catalog/102679862

[134] An Introduction to APL2, APL2 Version 1 Release 2

(Program Product), IBM, Jon McGrew, December

1985, SH20-9229-1, Bitsavers: https://archive.org/

details/bitsavers_

ibmaplSH20toAPL2Dec85_12392164

[135] An Introduction to APL2, APL2 Version 2 Release 1

(Program Product), IBM, Jon McGrew, March 1992,

SH21-1073-00: http://www.elink.ibmlink.ibm.com/

publications/servlet/pbi.

wss?CTY=US&FNC=SRX&PBL=SH21-1073-00

[136] � e APL Jot Dot Times: An IBM in-house newsletter

created by Jon McGrew; “Special Security Issue,”

Spring 1985, 234 pages, Computer History Museum:

http://www.so� warepreservation.org/projects/apl/

Brochures/APLJotDotTimes

[137] Iverson Award: https://en.wikipedia.org/wiki/

Iverson_Award

•

55APL - Journal 1/2/2016

� e Evolution of Computing� e Evolution of Computing� e Evolution of Computing

James A. Brown* and Peter Schade**

The Evolution of Computing
On the occasion of the 50th anniversary of the APL workspace 1 CLEANSPACE German
Guide Share Europe Working Group, APL Germany and IBM Germany
November 27-29, 2016 IBM Böblingen, Germany

� is paper is extracted from the HTML presentation made at the conference. Without
the discussion that accompanied the presentation, not everything is easily understood.
However, some text is added below for clari� cation.

The Evolution of Computing
Dr. James A. Brown; NestedComputing Corp; SmartArrays, Inc.

Peter Schade; International Microsystems

On the occasion of the 50th anniversary of the APL workspace 1 CLEANSPACE
German Guide Share Europe Working Group, APL Germany and IBM Germany

November 27‐29, 2016 IBM Böblingen, Germany

Abstract

This paper is extracted from the HTML presentation made at the conference. Without the discussion that
accompanied the presentation, not everything is easily understood. However, some text is added below
for clarification.

Motivation

1. Processors

a. Lots of processors on a chip
i. My laptop has 8 cores

ii. Intel 48-Core "Single-Chip Cloud Computer
iii. Adapteva Epiphany architecture allows 2048 processors on a chip

b. All share the same main memory
c. Memory contention limits performance

i. levels of cache memory - store information the CPU is most likely to need next
ii. sophisticated algorithms - it gets complicated

2. Main Memory

a. Random-access memory
i. Can read or write data in the same time no matter physical location

ii. Usually volatile - information lost when power removed
iii. SRAM - Static random-access memory (Faster but needs more power)
iv. DRAM - dynamic random-access memory

3. Attached Memory

a. Spinning Disk Drives
i. Formatted with Tracks, Cylinders, Sectors

b. Solid State Disk Drives
i. Simulates spinning drive

ii. Perfect compatibility
iii. zero seek time
iv. Very fast
v. wastes the potential

* NestedComputing Corp; SmartArrays, Inc.

** International Microsystems

56 APL - Journal 1/2/2016

� e Evolution of Computing

2. DAC Memory Model
a. RAM

i. Each Master, Slave, and node has private RAM
b. Attached Memory

i. Each Master, Slave, and node can have private attached memory
ii. Slave, and Node can share attached memory (Called DAC Disks)

c. DAC Disks
i. Hard attached to Slave or Node

1. Instantaneous (Hardware switch)
2. Move mass data between Slave and Node with NO Network activity
3. No TCP/IP to transmit a file
4. No transmission at all

ii. Disjoint Memory
1. Sometimes attached memory is local (on the slave)
2. Sometimes attached memory is remote (on the nodes)
3. Unlike Distributed memory

iii. Disjoint Array
1. Parts of array stored in multiple disjoint memories
2. Sometimes all of array is local
3. Sometimes array is distributed

iv. DAC Disk Connections in following diagrams
1. Control Line:

a. Slow Speed Hardware Connection
b. Ethernet over USB (a private internet connection)
c. For commands, return codes, messages

2. Data Line:
a. High Speed Hardware Connection
b. For high volume data

c. NVMe Disk Drive
i. NVMe - Non-Volatile Memory Express

ii. Does not simulate spinning drive
iii. Requires new OS support (Linux has it)
iv. Significantly faster data transfer
v. Requires fewer CPU cycles

You might wonder why the detailed discussion of NVMe disks. It’s because it is the current state of the
art in attached memory and the possible next generation of this technology is part of the future machine
described below.

What we’re doing: DAC - Disjoint Array Computer

1. A three level machine: Machine Architecture
a. Three Levels of Processing

i. Level 1 - User and External Network Interface
ii. Level 2 – Program Analysis and Distribution

iii. Level 3 - Arrays of Processing Nodes

 Architecture Diagram

b. Large Distributed Memory – 100’s of Terabytes Possible
c. Node memories independent at compute time
d. The DAC Computer

i. Packaged as a single computer
ii. Cloud in a box

iii. Closely coupled distributed storage
iv. Array data is local or remote as needed
v.

57APL - Journal 1/2/2016

� e Evolution of Computing

v. DAC Memory Model: View 2 - DAC Disks attached to Nodes

3. Disjoint Array
a. “Disjoint” From Synonym.com

i. Separated
ii. Divided

iii. Disassembled
b. A Disjoint array is:

The new capability of the DAC machine is the ability to do parallel processing with no memory
contention because the attached memories are hardware movable between slaves and nodes.

2. DAC Memory Model
a. RAM

i. Each Master, Slave, and node has private RAM
b. Attached Memory

i. Each Master, Slave, and node can have private attached memory
ii. Slave, and Node can share attached memory (Called DAC Disks)

c. DAC Disks
i. Hard attached to Slave or Node

1. Instantaneous (Hardware switch)
2. Move mass data between Slave and Node with NO Network activity
3. No TCP/IP to transmit a file
4. No transmission at all

ii. Disjoint Memory
1. Sometimes attached memory is local (on the slave)
2. Sometimes attached memory is remote (on the nodes)
3. Unlike Distributed memory

iii. Disjoint Array
1. Parts of array stored in multiple disjoint memories
2. Sometimes all of array is local
3. Sometimes array is distributed

iv. DAC Disk Connections in following diagrams
1. Control Line:

a. Slow Speed Hardware Connection
b. Ethernet over USB (a private internet connection)
c. For commands, return codes, messages

2. Data Line:
a. High Speed Hardware Connection
b. For high volume data

v. DAC Memory Model: View 2 - DAC Disks attached to Nodes

3. Disjoint Array
a. “Disjoint” From Synonym.com

i. Separated
ii. Divided

iii. Disassembled
b. A Disjoint array is:

The new capability of the DAC machine is the ability to do parallel processing with no memory
contention because the attached memories are hardware movable between slaves and nodes.

58 APL - Journal 1/2/2016

� e Evolution of Computing

v. DAC Memory Model: View 2 - DAC Disks attached to Nodes

3. Disjoint Array
a. “Disjoint” From Synonym.com

i. Separated
ii. Divided

iii. Disassembled
b. A Disjoint array is:

The new capability of the DAC machine is the ability to do parallel processing with no memory
contention because the attached memories are hardware movable between slaves and nodes.

4. Three Prototypes of DAC Machine have been built
a. DAC Prototype 1

i. Master / Slave: M5208 Intel 64-bit USB Duplicator
ii. 8 Nodes: ODROID-XU ARM 32-bit

iii. Used for Software Development

b. DAC Prototype 2

i. Master / Slave: Custom Packaging Intel 64-bit
ii. 16 Nodes: ODROID-XU ARM 32-bit

iii. In a single box
iv. Used for Customer/Investor demos

One Node

4. Three Prototypes of DAC Machine have been built
a. DAC Prototype 1

i. Master / Slave: M5208 Intel 64-bit USB Duplicator
ii. 8 Nodes: ODROID-XU ARM 32-bit

iii. Used for Software Development

b. DAC Prototype 2

i. Master / Slave: Custom Packaging Intel 64-bit
ii. 16 Nodes: ODROID-XU ARM 32-bit

iii. In a single box
iv. Used for Customer/Investor demos

One Node

4. Three Prototypes of DAC Machine have been built
a. DAC Prototype 1

i. Master / Slave: M5208 Intel 64-bit USB Duplicator
ii. 8 Nodes: ODROID-XU ARM 32-bit

iii. Used for Software Development

b. DAC Prototype 2

i. Master / Slave: Custom Packaging Intel 64-bit
ii. 16 Nodes: ODROID-XU ARM 32-bit

iii. In a single box
iv. Used for Customer/Investor demos

One Node

59APL - Journal 1/2/2016

� e Evolution of Computing

c. DAC Prototype 3
i. Master / Slave: Mini-ITX J1900 Intel 64-bit

ii. 4 Nodes: Mini-ITX J1900 Intel 64-bit

One Node

4. Three Prototypes of DAC Machine have been built
a. DAC Prototype 1

i. Master / Slave: M5208 Intel 64-bit USB Duplicator
ii. 8 Nodes: ODROID-XU ARM 32-bit

iii. Used for Software Development

b. DAC Prototype 2

i. Master / Slave: Custom Packaging Intel 64-bit
ii. 16 Nodes: ODROID-XU ARM 32-bit

iii. In a single box
iv. Used for Customer/Investor demos

One Node

c. DAC Prototype 3
i. Master / Slave: Mini-ITX J1900 Intel 64-bit

ii. 4 Nodes: Mini-ITX J1900 Intel 64-bit

One Node

60 APL - Journal 1/2/2016

� e Evolution of Computing

5. Programming
a. DAC API: The commands

- - active: Display a list of active nodes
- - distribute: Copy unique set of files to each node
- - exec2: Execute an OS command on a slave (level 2)
- - exec3: Execute an OS command on a node (level 3)
- - exec3r: Execute an OS command on a node (level 3) and don't wait for a result
- - exec3z: Wait for then fetch exec3r result
- - exit: Shut down client
- - executing: List nodes that are executing an OS command
- - filecopy: Copy a set of files to each node
- - filedelete: Delete files on each node
- - filelist: List files that exist on each node
- - filelistlocal: List files that exist on slave
- - mount: mount Disjoint memory on node (and remove from slave)
- - umount: mount Disjoint memory on slave (and remove from node)
- - restart: Shut down node server and restart with new code level
- - status: Information about Disjoint memory and where it's mounted
- - time: Give elapsed time since you last asked

b. Programming languages supported

i. C
ii. C++

iii. C#
iv. SmartArrays
v. Dyalog APL

c. High Level Interfaces
i. DAC Interactive Console: Used for debugging and learning

Input: mount
000: OK
003: OK
001: OK
002: OK
Input: status
002: USB: localhost Device: localstore mounted on (simulated) node at
/AOSLocal 7 files 353M bytes used 11063M free space 3010M RAM
000: USB: localhost Device: localstore mounted on (simulated) node at
/AOSLocal 7 files 265M bytes used 10442M free space 3010M RAM
003: USB: localhost Device: localstore mounted on (simulated) node at
/AOSLocal 7 files 353M bytes used 10983M free space 3010M RAM
001: USB: localhost Device: localstore mounted on (simulated) node at
/AOSLocal 7 files 353M bytes used 11065M free space 3010M RAM

Input: exec3 sleep %%%
000: OK
001: OK
002: OK
003: OK

ii. DAC Controller: An Interactive Dialog

61APL - Journal 1/2/2016

� e Evolution of Computing

d. Parallel Programming using Dyalog APL isolates

What we’re doing: FASDAC- Flat Address Space Disjoint Array Computer

Note that the information about FASDAC is considered the intellectual property of International
Microsystems, NestedComputing and SmartArrays. Copyright © 2016

1. Flat Address Space
a. As opposed to segmented memory
b. Traditionally contiguous - zero to-memory size-1
c. FASDAC allows multiple contiguous address ranges
d. Address translation still allowed (assignment of real memory to virtual memory)
e. RAM - one kind of memory for immediate and long term storage

2. NVMe revisited
a. Significantly faster data transfer
b. BUT IT'S STILL A DISK

3. NVMEF - Flat NVME
a. Does not simulate a spinning disk
b. When attached, a new continuous RAM address range is visible
c. "Plug and Play" RAM
d. All data is always memory resident

Flat NVMe is the extension of current NVMe to allow the flash memory to be treated as RAM. Initially,
this “Plug and Play” RAM would be used for memory mapped data and not for program execution but
this restriction could be lifted in a next generation.

62 APL - Journal 1/2/2016

� e Evolution of Computing

d. Parallel Programming using Dyalog APL isolates

What we’re doing: FASDAC- Flat Address Space Disjoint Array Computer

Note that the information about FASDAC is considered the intellectual property of International
Microsystems, NestedComputing and SmartArrays. Copyright © 2016

1. Flat Address Space
a. As opposed to segmented memory
b. Traditionally contiguous - zero to-memory size-1
c. FASDAC allows multiple contiguous address ranges
d. Address translation still allowed (assignment of real memory to virtual memory)
e. RAM - one kind of memory for immediate and long term storage

2. NVMe revisited
a. Significantly faster data transfer
b. BUT IT'S STILL A DISK

3. NVMEF - Flat NVME
a. Does not simulate a spinning disk
b. When attached, a new continuous RAM address range is visible
c. "Plug and Play" RAM
d. All data is always memory resident

Flat NVMe is the extension of current NVMe to allow the flash memory to be treated as RAM. Initially,
this “Plug and Play” RAM would be used for memory mapped data and not for program execution but
this restriction could be lifted in a next generation.

4. Two Views of FASDAC Memory Model
a. View 1 - DAC Disks attached to Slave

b. View 2: FASDAC Disks attached to Nodes

63APL - Journal 1/2/2016

� e Evolution of Computing

6. Conclusion: FASDAC is An Array Machine

a. Typed memory is vector oriented
b. Higher rank arrays realized with programming

 DAC is Evolutionary

 FASDAC is Revolutionary

Therefore, an operating system that is aware of typed vectors in memory running on a FASDAC machine
is:

5. Typed Memory:
a. Memory is "Typed"

i. not just a stream of bytes
ii. Array Oriented

b. Some memory is strongly typed
i. Type RAM - a stream of bytes for support of legacy software and program

execution
ii. The machine's native memory is type RAM

iii. Type FILE - memory that contains the contents of a file
iv. Type OSxx - set of memory items formatted for Operating System control

c. Some memory is weakly typed
i. Type NUMERIC - a stream of numbers without respect to storage format

ii. Type CHAR - a stream of characters without respect to storage format (UCS
1,2,4)

iii. Machine supports conversion
d. Some memory is recursively typed

i. Type NESTED - memory that contains other memory entries
e. Attached DAC drive

i. Is recursively typed
ii. Nested structure matches directory structure

f. Database table
i. List of columns

ii. Each column in strongly typed memory
iii. Trivial memory map for analytics
iv. Overallocation for transactions

64 APL - Journal 1/2/2016

Bericht von Dyalog 2016

Statistik

Insgesamt waren 121 Teilnehmer aus 15
Ländern (33 TN aus Großbritannien, 23
aus USA, 22 aus Italien, etlichen anderen
Ländern und als Schlusslicht jeweils 2 aus
Deutschland, der Schweiz, den Niederlan-
den und der Ukraine, jeweils 1 TN aus Süd-
Afrika und Belgien). Das reine Konferenz-
programm bestand aus 25 Vorträgen an 2
Tagen, dazu kamen 1,5 Tage gemeinsamer
Veranstaltung mit der British APL Associa-
tion zur Feier des 50-jährigen Geburtstags.
Eingerahmt war das Programm von 12
Workshops vor und nach der Konferenz.

Michael Baas

Bericht von Dyalog 2016
Das diesjährige Dyalog-Benutzertre� en fand vom 9-13. Oktober in Glasgow statt. Der
Chronist als einer von zwei deutschen Teilnehmern möchte mit diesem Artikel gerne
informieren, was da so alles geboten wurde – damit vielleicht noch weitere APLer
motiviert werden und wir im nächsten Jahr schon zu dritt Skat spielen können?

Conference Hotel". Sowohl kulinarisch wie
auch technisch wurden wir nicht enttäuscht,
nur die Sache mit dem Flughafentransfer
muss das Team noch ein bisschen üben
;-) Mir blieb leider keine Zeit, um neben
dem Programm auch mal die Umgebung
zu erkunden – etwas bedauerlich, weil das
Wetter für Oktober in Schottland wirklich
ausgesprochen gut war: nicht nur, dass es
nicht regnete, sogar die Sonne war häu� ger
zu sehen! Im Rahmen des Programms wur-
den dann auch die lokalen Besonderheiten
gewürdigt: am Abend des ersten Tages gab
es eine Verkostung von Whisky und Scho-
kolade, die eine nahegelegene Brennerei

9.10. So 10.10 Mo 11.10 Di 12.10 Mi 13.30 Do

Workshops Dyalog Dyalog BAA &
Dyalog

BAA & Dyalog |
Workshops

durchführte. Gerne hätte der Autor dieser
Zeilen die schottische Whiskey-Kultur aus-
führlicher erforscht, doch nach 2 Gläsern
war schon Schluss des Programms. Zum
Festessen anlässlich der Geburtstagsfeier
wurden wir dann stilecht von einem Du-
delsack-Spieler begrüßt und dann gab es
natürlich auch den berühmten "Haggis" als
Teil des Menüs – stilecht zelebriert durch

Insgesamt 42 Vorträge und 12 Workshops
an 5 Tagen – das Programm war ziemlich
"sportlich", für 2017 wünsche ich mir mehr
Zeit.

Ort

Veranstaltungsort in Glasgow war das et-
was außerhalb gelegene "Golden Jubilee

65APL - Journal 1/2/2016

Bericht von Dyalog 2016

einen Ureinwohner, der messerschwingend
die Ode an den Haggis rezitierte.

Workshops

Die angebotenen Workshops (jeweils 4h)
deckten ein breites � emenspektrum ab:
im 2-teiligen "CookBook"-Workshop ging
es um ein "Kochbuch" mit Empfehlungen
bewährter Rezepte für das Entwickeln von
Dyalog-Anwendungen; "� reading and
Synchronization" zeigte Wege auf, sicher
mit � reads umzugehen; bei "Web Appli-
cation Development" wurde in zwei Sessi-
ons die Web-Portierung einer "alten" Desk-
top-Anwendung erörtert; "Compiler and
Performance Features" zeigte Wege auf,
die Laufzeiten zu verbessern; bei "Arti� cial
Neural Networks in APL" ging es um die
Entwicklung neuronaler Netze mit APL; im
Workshop "Taming Statistics with TamS-
tat" konnten die Teilnehmer die TamStat-
So� ware kennenlernen, mit welcher Autor
und Referent Stephen Mansour seinen Stu-
denten den Zugang zur Statistik erleichtern
möchte; Roger Hui zeigte in "A Tour (de
Force) of APL in 16 expressions", wie APL
die 5 wesentlichen Eigenscha� en einer No-
tation (nach K. Iverson) auf unübertro� ene
Weise erfüllt; bei "Version 15.0 in Depth"

beschä� igte man sich eingehend mit den
neuen Möglichkeiten von Version 15; im
Workshop "Compiling ANN (Arti� cial
Neural Networks) and other APL Code"
wurde gezeigt, wie die Gra� kprozessoren
heutiger Computer aus Dyalog heraus ge-
nutzt werden können, um performance-
kritischen, parallelisierbaren Code dort
auszuführen und bei "Data Visualisation"
wurde schließlich ein Überblick geboten
über die vielfältigen Möglichkeiten zur
Erstellung von Gra� ken mit Dyalog APL.
Ich schätze solche Workshops sehr, denn
man hat dort die Möglichkeit, bestimmte
� emen doch mal ausführlicher zu erkun-
den, als das im Rahmen einer Präsentation
möglich ist. Für mich eine Art "Intensiv-
Training", die das normale Tagungspro-
gramm sehr gut ergänzt.

Vorträge

Die Palette der Vorträge war zu groß, um
jeden auch nur mit einer Zusammenfas-
sung zu würdigen. Ich möchte stattdessen
einfach ein paar wenige Vorträge heraus-
greifen, die mich besonders interessiert
haben.

Nick Nickolov & Morten Kromberg:
Open Front Ends

Ein kleiner Einblick in Dinge, die gerade
in Entwicklung sind: so wird etwa an ei-
nem Eclipse-Plugin gearbeitet, mit dem
APL-Sourcecode verwaltet werden kann.
Ergänzt wird das Ganze durch einen unter
Eclipse nutzbaren Debugger. RIDE 4.0, die
Entwicklungsumgebung für "entfernte Ent-
wicklung", soll die Default-IDS unter Linux
und macOS werden. damit soll dann auch

66 APL - Journal 1/2/2016

Bericht von Dyalog 2016

eine "zero footprint"-Entwicklung möglich
werden, bei der man sich über dem Web-
browser mit einer laufenden APL-Session
verbinden und diese debuggen kann. Span-
nende Zukun� saussichten!

Performance

Ein Dauerbrenner, und die vielfältigen
Projekte zeigen nun deutliche Früchte.
Sehr beeindruckend zeigen das immer die
Performance-Charts, welche die Perfor-
mance-Verbesserungen zwischen den un-
terschiedlichen Versionen beim Abarbe-
iten einer Test-Suite von 136 Gruppen von
13.659 Ausdrücken analysieren. Mit V15 er-
gab sich im geom. Mittel eine Laufzeit-Ver-
besserung von 25%, umgekehrt gab es bei
2.2% der Funktionen eine Verschlechter-
ung, die aber unter 2% lag. Insgesamt also
ein deutlicher Performance-Zuwachs, der
so auch von vielen Nutzern bestätigt wurde.
Seit längerer Zeit hat Dyalog ein Projekt
mit Aaron Hsu von der Universität Indi-
ana, der daran arbeitet, dynamische Funk-
tionen (d-fns) zu kompilieren und vom

Gra� kprozessor des PC ausführen zu lassen.
Nachdem das lange eher wie � emen von
theoretischer Bedeutung erschien, bemühte
er sich im letzten Jahr verstärkt darum, den
praktischen Nutzen herauszuarbeiten. Das
Potential ist beeindruckend, z.B. konnten
beim Inner-Product Verbesserungen um
Faktor 300-400 (!) beobachtet werden. In-
teressanter ist aber der Gesamte� ekt, der in
Bezug auf eine Applikation erreicht werden
kann. Hier führte Aaron u.a. die ANN (Ar-
ti� cal Neural Networks) als Beispiel an, wo
eine Verbesserung um Faktor 20 erreicht
wurde.

Veli-Matti Jantunen: "� e journey of an
APL2 Bigot to Dyalog World"

Veli-Matti hielt eine Art Rückschau auf sein
bisheriges APL-Leben und erzählte, wie er
APL kennengelernt hatte und dann zu einem
APL2-Anhänger wurde, bis er durch beru� .
Veränderungen nach 12 Jahren den Umstieg
auf Dyalog 6.3 beginnen musste. Sein erster
Eindruck damals: das GUI und die Entwick-
lung von GUIs ge� elen ihm, ebenso Tracer,

Editor und die Möglichkeiten zur
Excel-Anbindung, er störte sich an
den exotischen Tastenkürzeln im
Editor und vermissten Funktionen
für den Umgang mit native Files.
Als richtigen "Kulturschock" emp-
fand er, dass seine Lieblingssymbole
↑,⊃,⊂,∊ und ≡ sich auf einmal an-
ders verhielten und der Interpreter
einige Ausdrücke anders auswer-
tete, z.B. musste er Ausdrücke wie
1 2 'ABC'[2] in Dyalog um-
schreiben zu 1 2 ('ABC'[2]).
Nachdem er diese Hürden über-
wunden hatte und damit begann,

67APL - Journal 1/2/2016

Bericht von Dyalog 2016

die Möglichkeiten zu erforschen und auszu-
nutzen, nahm die Begeisterung zu (ich ver-
zichte hier auf die Aufzählung aller her-
ausgestellten Punkte – er war schlicht zu
viel!). Mit Screenshots der verschiedenen
Versionen der von ihm betreuten So� ware
wurde dann deutlich, wo und wie die neuen
Features der einzelnen Dyalog-Versionen
sich auswirkten.

 John Daintree: "� e Air� x-Model:
Programming from a Kit Of Parts"

Bei den Vorträgen von John Daintree darf
man immer auf Überraschungen gefasst
sein, dieser Titel klang aber zu langwei-
lig und ernstha� , um Wesentliches zu er-
warten. Dachte ich.

John nahm uns mit in seine beschaulichen
Kindheitserinnerungen – insbesondere
an den Bau von Modell� ugzeugen. Er er-
zählte, wie ihm dann irgendwann bei der
Arbeit au� el, daß das, was er nun tat, ja gar
nicht so anders war: eigentlich, so meint er,
nimmt man nun auch Einzelteile (Biblio-
theken), die andere entwickelt haben und
verbindet sie mit etwas Klebsto� (eigenem
Code) zu etwas Neuem.

Und so begann er dann zu überlegen, was
denn die verschiedenen Einzelteile wären,

die ihm zur Verfügung stünden. Klar, Dy-
alog, macOS, der Raspberry Pi und die
RIDE-Umgebung. macOS und Raspberry
Pi haben beide ja in gewisser Weise "Unix
unter der Haube". Hm, war da nicht noch
ein Betriebssystem, das irgendwie auch
auf Unix aufsetzt? Ach ja, Android! für die
Ent wicklung unter Android gibt es meh-
rere Ansätze, u.a. auch ein Objektmod-
ell, das auf Java aufsetzt. Java...? Ach ja, für
die Java-Anbindung hatte John mal eine
Bridge-Komponente entwickelt. Noch ein
Baustein. Dann erinnerte er sich die Be-
gegnung mit einem Anwender, der ihn
darauf ansprach, ob er wohl dieses Jahr
wieder einen Vortrag mit seiner CD-Daten-
bank ("CDDB") machen würde. Der letzte
Baustein! Und so nahm er all diese Bausteine
mit in seine Werkstatt – und kam wieder mit
der CDDB, die nun auf dem Android-Fern-
seher, Telefon, Tablet und sogar auf der
Smartwatch nutzbar war!

Bis all das für uns "Fußgänger" nutzbar ist,
wird es wohl noch ein paar Monate dauern –
aber diesen Ausblick auf die Möglichkeiten
habe ich als sehr motivierend empfunden!

 � omas Gustafsson: "� e Calm
Before � e Stormwind" / Vking-
Challenge

 Der für mich beeindruckendste Vortrag!
� omas führte seinen Boot-Simulator
"Stormwind" vor. Eine Dyalog-Anwendung,
bestehend aus 694 Funktionen, 661,447
bytes und 22.335 Programmzeilen. Hun-
derte Kunden, einerseits aus dem Segment
der "professional users" (Seenotrettung,
Marine, wissenscha� liche Einrichtungen
etc.) und private Nutzer

68 APL - Journal 1/2/2016

Bericht von Dyalog 2016

(235 – 385€, je nach Umfang Kartenma-
terial). Man kann damit eine Bootsfahrt
simulieren. Es können unterschiedlichste
Bootstypen in verschiedenen Gewässern
gefahren werden, dabei wird echtes
Kartenmaterial verwendet, Tag/Nacht- und
div. Klimasituationen simuliert etc. Die
So� ware ist sehr � exibel kon� gurierbar, es
können unterschiedlichste Gaming-Geräte
angeschlossen und verwendet werden, um
zu lenken, zu beschleunigen usw.

Soweit vorhanden kann dann eben
auch ein Simulator mit eingebunden wer-
den, über denn auch die Bewegungen des
Bootes erfahrbar werden. In meiner Pro-
befahrt gelang es mir nicht, das Boot zum
Kentern zu bringen – aber die Simulation
des Bootes erschien meinem Magen sehr
glaubwürdig! ;-) Typischer Bestandteil der
Dyalog-Konferenz ist ja immer auch eine
"Viking-Challenge", irgendeine Heraus-
forderung, die an die Glanzzeiten der alten
Wikinger erinnert. Dieses Jahr wurde die
Herausforderung mit dem Stormwind-Si-
mulator umgesetzt: es galt, einen in Seenot
geratenen Freund zu retten und das Boot
auf dem schnellsten Weg zu gegebenen Ko-
ordinaten zu navigieren und dabei allerlei
Überraschungen zu bewältigen.

 Dr. Stephen Ja� e: "Composition
Based Modelling and Dyalog APL"

Dr. Ja� e ist bereits im Ruhestand und
berichtete anlässlich des 50-jährigen Jubi-
läums über diese Anwendung von Dyalog
APL in der Öl-Industrie (ExxonMobil). Raf-
� nerien verarbeiteten ursprünglich immer
"lokales Öl" der nächstgelegenen Quellen.
In den 70er-Jahren kam es durch das Ölem-
bargo zu einer Änderung des Geschä� smod-
ells und die Ra� nerien suchten nach neuen
Wegen: es wurden neue Ölfelder erschlos-
sen (u.a. auch in Afrika), deren Öl dann per
Schi� zu den Ra� nerien transportiert wurde.
So hatten die Ra� nerien auf einmal unter-
schiedlichste Sorten Rohöl zur Verfügung
und mussten entscheiden, welches Öl sie (zu
welchem Preis) ankaufen sollten und welches
Endprodukt daraus hergestellt werden sollte.
Beim "Composition Modelling" geht es nun
um Prozesse, die das Herz eines jeden Che-
mikers höher schlagen lassen, die der Chro-
nist aber in Ermangelung notwendiger Fach-
kenntnisse gar nicht erst versuchen möchte,
zu beschreiben. Während dieses mehrstu-
� gen Vorgangs gibt es jedenfalls viele An-
sprechpartner, Berechnungen, Analysen und
Zuständigkeiten – und Stephen resümiert
ganz nüchtern: "jeder kann sich mal ir-
ren, aber unsere APL-Modelle lagen immer
richtig!". Im Ergebnis gelangt man dann zu
einem "Rezept", wie das Rohöl zu behandeln
ist, ob ein maximales Ergebnis zu generieren.

Das System wurde ca. 1987-2006 in Dyalog
APL entwickelt. Aus Performance-Grün-
den wurden Teilfunktionen dann sogar
in Fortran ausgelagert, wobei der For-
tran-Code jedoch durch die APL-So� ware
erstellt und ausgeführt wurde:

69APL - Journal 1/2/2016

Bericht von Dyalog 2016

Rechenzeit schlicht nicht möglich, wie er
mit dem Pseudo-Code aus dem Screenshot
zeigte.

Charles fand jedoch eine Herangehens-
weise, dennoch in endlicher Zeit verlässli-
che (und vor Gericht belastbare Aussagen)
zu machen – und das auch noch schneller
und mit größerer Sicherheit, als es alle
Wettbewerber können.

Und weil er ja im Titel des Vortrags verspro-
chen hatte, auch zu nörgeln, kamen dann
auch ein paar Verbesserungsvorschläge:

 • um eine neue Funktion zu erstellen, kann
man ja in der Session den Funktionsna-
men eintippen und darauf Shift+Enter
drücken. Shift+Enter in einer Leerzeile
sollte direkt den Funktionseditor öff-
nen, schlägt er vor.

 • Ferner bemängelte Charles, dass i-beam
⌶ das linke Argument numerisch ist.
Um zum Beispiel den zu verwendenden

Charles Brenner:
"� e Joy of (Especially Dyalog) APL and
Some Gripes"

Der forensische
Mathematiker
Charles Brenner
(der seine Berufs-
bezeichnung selbst
erfunden hat) ist ein weiteres Beispiel für
einen "domain expert", der mit APL sein
Expertenwissen in eine Anwendung ge-
packt hat, die weltweit genutzt wird (sogar
beim BKA eingesetzt wird). Charles, der seit
1967 mit APL arbeitet, hatte ursprünglich
seine Anwendung mit APL*PLUS entwick-
elt und sie dann in den letzten Jahren nach
Dyalog APL portiert. Die durch die So� -
ware gelösten Probleme kann niemand so
gut und lebendig beschreiben wie Charles
selbst (nach eigenen Angaben ist er auch
noch ein "Standup APL-Comedian"). So-
weit ich es verstanden habe, geht es darum,
DNA von Tatorten abzugleichen mit der
DNA von Verdächtigen, wobei er sich
speziell auf Fälle mit verunreinigter oder
gemischter DNA mehrerer Verdächtiger
konzentriert. Hierbei eindeutige Nachweise
zu führen, ist wg. der dafür notwendigen

In Zahlen:
9.800 Zeilen APL Berechnung in einem typischen Modell

9.800 57.000 APL GUI
124.000 Fortran

12 Entwickler (Chemiker)
200 Benutzer

200.000 Modellberechnungen/Jahr
44 Ra� nerien weltweit

5.5 Mio Barrel = 8.744.301 Hektoliter Öl täglich verarbeitet
1 Mrd USD = geschätzter zum Jahresgewinn nur durch

beste Ausnutzung der Rohöle!

70 APL - Journal 1/2/2016

Bericht von Dyalog 2016

Zufallsgenerator auszuwählen, schlägt
er vor, statt 16807 im linken Argument
einen String, etwa 'RandomNumber-
Generator' anzugeben.

 • Bei STSC gefiel ihm, dass ⎕FRDCI im
Ergebnis auch direkt einen lesbaren
Timestamp ausgab – so fragt er "why do
I have to work so hard?" ("Warum muss
ich so schwer arbeiten?") und hat ein
Utility QFRDCI geschrieben, welches
dieses Verhalten nachbildet.

Und außerdem...

(Foto: John Scholes)

Sehr interessant fand ich auch die zahlrei-
chen Rückblicke auf 50 Jahre APL mit vie-
len persönlichen Anekdoten (zum Beispiel
wie Geo� Streeter in Frankreich Schwierig-
keiten mit dem Zoll bekam, weil man ihm
nicht glaubte, dass 10 damals brandneue
3.5-Zoll Disketten 40 GBP Wert waren und
deutlich teurer als die viel größeren Mag-
netbänder), spannender Hardware, faszi-
nierenden Frisuren und einem ganz ande-
ren Umfeld.

Ein anderer Teilnehmer erzählte in seinem
Rückblick, wie er einen jungen Studenten
kennenlernte, der einen Investor suchte für
sein Projekt zur Entwicklung eines APL-
Compilers. Nachdem er den Studenten be-
sucht hatte, abgeschreckt war von dessen
Gejammere über die Schwierigkeiten mit
Hardware etc. und der Unordnung in des-
sen Büro entschied er schließlich, nicht zu
investieren. Der Student war Bill Gates!

Weiterhin...

waren da noch die Gewinner der "APL Pro-
blem Solving Competition", die inzwischen
schon zum 8. mal von Dyalog ausgerich-
tet wurde. Die Preisträge der 3 Kategorien
(Finanzen, Bio-Informatik, Allgemein)
hielten jeweils Vorträge, in denen sie Ihre
Lösungen präsentierten. Ich � nde es moti-
vierend, zu sehen, dass durch solche Maß-
nahmen tatsächlich neue Generationen an-
gesprochen werden und trotz der großen
Konkurrenz auf dem Markt der Computer-
sprachen begeistert sind von APL. Im Zu-
sammenhang mit "Begeisterung" muss ich
unbedingt noch Alex Weiner erwähnen:
ein "Electrical & Computer Engineer", für
den es ganz natürlich war, sich mit Matri-
zen auseinanderzusetzen, weil man in der
Elektronik eben alles als Matrix darstellen
kann. Und weil man ja auch Computer da-
rüber dann modellieren kann (er hatte das
Buch eine gewissen K. Iverson gelesen...),
schien es ganz natürlich zu sein, sich mit
APL zu beschä� igen. Weil er sich mit APL
aber als Hobby beschä� igen sollte, suchte
Alex ein "cooles � ema" und kam schließ-
lich auf die Idee, Gra� ken zu verarbeiten –
das sind ja auch Matrizen. So entwickelte
er eine Funktion, welche zwei Gra� ken

71APL - Journal 1/2/2016

Bericht von Dyalog 2016

kombiniert. (Einfach auf http://yhnmjuik.
com/ selbst ausprobieren.) Sicherlich keine
Raketenwissenscha� , cool. Viel begeistern-
der als das war die Begeisterung, mit der
von APL sprach und alle Leute aus dem Be-
kanntenkreis gleich "konvertieren" wollte
– immerhin einen neuen APLer hat er ge-
worben :-) Um diese Begeisterung dann
ganz praktisch weiterzugeben, verschenkte
er selbstgemachte Ansteckbuttons mit sei-
nem Namen und einem netten Kommen-
tar wie "APL is great" usw. Diese Eigen-
werbung machte sich bezahlt: während des
Meetings bekam er von einem der Teilneh-
mer ein Jobangebot!

Die Italiener waren auch wieder da!

Roberto Minervini ist ein ehemaliger Ent-
wickler von APL Italiana, der trotz aller
Freude an APL viel lieber als Lehrer arbei-
ten wollte. Dabei hat er dann auch APL ge-
nutzt und darüber schon im letzten Jahr ei-
nen Vortrag gehalten. (Die Gewinnerin des
letzten APL-Wettbewerbs hatte übrigens
bei ihm Unterricht!) Die theoretischen

Gedanken, wie man Schülern etwas so
Abstraktes wie Mathematik und APL na-
hebringen kann, führten schließlich dazu,
daß er versuchte, mit Hilfe von Cartoons
den Schülern den Zugang zu erleichtern.
Um zu beweisen, dass das funktioniert, gab
es zum Schluss des Vortrags einen Wett-
bewerb, bei dem die Teilnehmer im Publi-
kum direkt mitmachen konnten und über
eine auf ihren Smartphones oder Laptops
aufzurufende Seite versuchen mussten, zu
erkennen, welche APL-Idiome in verschie-
dene Cartoons dargestellt waren. Wer es
mal ausprobieren mag, kann das am fol-
genden Beispiel tun (Lösung am Ende des
Artikels).

Der Kenneth E. Iverson Award for
Outstanding Contributions to APL

oder kurz: der "Iverson-Award", eine Aus-
zeichnung, die vergeben wurde von SI-
GAPL, der "special interest group for APL"
innerhalb der ACM – der amerikanischen
Vereinigung for "computing machinery".
Seit 1983 19mal verliehen, in 2007 aber

72 APL - Journal 1/2/2016

Bericht von Dyalog 2016

letztmalig. (u.a. gibt es die SIGAPL inzwi-
schen nicht mehr). Anlässlich des 50-jähri-
gen Jubiläums gab es Bestrebungen, diesen
Preis wieder zu vergeben und so übernahm
die SIGPLAN-Gruppe von ACM die Preis-
vergabe und schließlich wurde der Preis
am Abend der 50-Jahrfeier verliehen als
Zeichen der Anerkennung des unermüdli-
chen Einsatzes für APL an Gitte Christen-
sen und Morten Kromberg.

Was noch fehlt

Vieles! Ich hatte ursprünglich vor, nur auf
drei Vorträge näher einzugehen, doch bei
der Auswahl merkte ich dann, dass dieser
aber nicht fehlen darf und ich jenen auch
nicht unerwähnt lassen kann, so wurde
es dann doch mehr – doch ich bin noch
immer nicht zufrieden mit der Auswahl.
Noch immer habe ich viele wertvolle Vor-
träge und interessante Referenten nicht
erwähnt, nicht gesprochen von großen
Anwendungen, von denen ich erfahren
habe usw. Ich möchte daher ausdrücklich
hinweisen auf Dyalogs Website zur Kon-
ferenz http://www.dyalog.com/user-mee-
tings/dyalog16.htm, wo die Tagesordnung
einsehbar ist und alle Vorträge mit Links
zu Video und Downloads versehen sind –
eine tolle Möglichkeit, auch im Nachhin-
ein mal reinzuschnuppern!

Fazit

Die Dyalog-Benutzertre� en sind seit vie-
len Jahren regelmäßiger Höhepunkt mei-
nes APL-Jahres und ich freue mich immer
auf die Zeit dort. Selten gibt es Gelegen-
heit, so viel über andere Anwendungen
zu erfahren, sich mit anderen Entwicklern

auszutauschen, die Neuigkeiten von Dya-
log kennenzulernen und in Workshops zu
vertiefen. Ich bin immer gerne dabei und
freue mich schon jetzt auf #Dyalog17!

Videos

Ich habe einige (kurze) Videos aufgenom-
men, die evtl. noch einen besseren Ein-
druck vermitteln:

https://www.youtube.com/watch?v=LKbnj
Vbed9Y — Stormwind-Simulator in
Action (etwas entfernte Sicht, damit man
das "Gesamtwerk" mit dem Simulatorau� au
sieht)
https://www.youtube.com/watch?v=kE8x
sIKsD8U&t=2s — Verleihung des
Iverson-Awards
https://www.youtube.com/watch?v=8NK3
UqVZX3Q — "Ode to a haggis"

P.S: die Lösung zum Idiom-Cartoon: links
unten :-)

Contact:
Michael Baas
APL Tools Group. Dyalog Ltd
DLS So� ware & Beratung GmbH
http://www.dls-so� ware.de/
Email: michael@mbaas.de

73APL - Journal 1/2/2016

50 years IBM APL 41 years IBM 510050 years IBM APL 41 years IBM 5100

50
 y
ea
rs
 IB

M
 A
PL

41
 y
ea
rs
 IB

M
 5
10

0
A
pe

rs
on

al
 c
om

pu
te
r t
ha
t d

om
in
at
ed

th
e
m
ar
ke
t

fr
om

 1
97

5
to
 1
98

3
Ge

ra
ld
 D
itt
ric
h
AP

L‐
GS

E
IB
M
 B
öb

lin
ge
n
28
.1
1.
20
16

50 years IBM APL 41 years IBM 5100

74 APL - Journal 1/2/2016

50 years IBM APL 41 years IBM 5100

28
.0
3.
20

17
SE
IT
E
2

In
tr
od

uc
ed

 in
 S
ep

te
m
be

r 1
97

5,
 th

e
51

00

Po
rt
ab
le
 C
om

pu
te
r w

as
 IB

M
's
fir
st
 p
ro
du

ct
io
n

pe
rs
on

al
 c
om

pu
te
r (
six

 y
ea
rs
 b
ef
or
e
th
e

be
st
‐s
el
le
rI
BM

 P
C)
. T
he

 5
10

0
w
as
 in
te
nd

ed

to
 p
ut
 c
om

pu
te
r c
ap
ab
ili
tie

s a
t t
he

 fi
ng
er
tip

s
of
 e
ng
in
ee
rs
, a
na
ly
st
s,
 st
at
ist
ic
ia
ns
 a
nd

 o
th
er

pr
ob

le
m
‐s
ol
ve
rs
, b
ut
 n
ot
 fo

r b
us
in
es
s p

ur
po

se
s.

If
th
e
siz
e
an
d
w
ei
gh
t o

f t
he

 5
10

0
se
em

s (
25

 k
g)
 h
ug
e
by
 to

da
y'
s s
ta
nd

ar
ds
, t
he

n
th
e
IB
M

51
00

 w
as
 v
er
y
sli
m
 c
om

pa
re
d
to
 a
 la
te
‐1
96

0'
s I
BM

 co
m
pu

te
r w

ith
 th

e
eq

ui
va
le
nt
 c
ap
ab
ili
ty
.

Su
ch
 a
 m

ac
hi
ne

 w
ou

ld
 h
av
e
be

en
 n
ea
rly

 a
s l
ar
ge
 a
s t
w
o
de

sk
s a

nd
 w
ou

ld
 h
av
e
w
ei
gh
ed

ab
ou

t h
al
f a

 to
n.

Th
e
51

00
 w
as
 m

uc
h
m
or
e
po

w
er
fu
l t
ha
t i
ts
 p
re
de

ce
ss
or
s,
 li
ke

Al
ta
ir
88

00
(a
nd

 m
uc
h
m
or
e

ex
pe

ns
iv
e
ho

w
ev
er
—
it
w
as
 so

ld
 fo

r b
et
w
ee
n
$8

97
5
an
d
$1

99
75

).

51
00

 IB
M
 P
or
ta
bl
e
Co

m
pu

te
r

75APL - Journal 1/2/2016

50 years IBM APL 41 years IBM 5100
28

.0
3.
20

17
SE
IT
E
3

It
fe
at
ur
ed

bu
ilt

in
CR

T
di
sp
la
y,

ke
yb
oa
rd
,
BA

SI
C
an
d/
or

AP
L
in
te
rp
re
te
ra

nd
m
as
ss
to
ra
ge

(ta
pe

dr
iv
e)
.

It
ha
s
al
so

a
m
uc
h
m
or
e
ad
va
nc
ed

de
sig

n:
A
m
ic
ro
co
de

d
16

‐b
it

CP
U

(1
.9
M
Hz

)
ex
ec
ut
in
g
an

in
te
rp
re
te
r
w
hi
ch

in
tu
rn

in
te
rp
re
ts

a
su
bs
et

of
th
e

IB
M

36
0

(o
r
IB
M
/3
)

m
ai
nf
ra
m
e
in
st
ru
ct
io
n
se
t!

51
00

 IB
M
 P
or
ta
bl
e
Co

m
pu

te
r

Av
ai
la
bl
e
op

tio
ns
:

ca
rr
yi
ng

 c
as
e

IB
M
 5
10

3
pr
in
te
r,
do

t m
at
rix
, t
ra
ct
or
 fe
ed

,
13

2
co
lu
m
n,
 8
0
ch
ar
/s
 b
id
ire

ct
io
na
l

IB
M
 5
10

6
ex
te
rn
al
 ta

pe
 d
riv

e

co
m
m
un

ic
at
io
n
ad
ap
te
r

se
ria

l I
/O

 a
da
pt
er

IB
M
51
00

 w
ith

ad
di
tio

na
l m

on
ito

r

76 APL - Journal 1/2/2016

50 years IBM APL 41 years IBM 5100

28
.0
3.
20

17
SE
IT
E
4

M
em

or
y

Pr
og
ra
m
m
in
g
la
ng
ua

ge

AP
L

BA
SI
C

Bo
th

16
K

A1
 ‐
$8

,9
75

B1
 ‐
$9

,9
75

C1
 ‐
$1

0,
97

5

32
K

A2
 ‐
$1

1,
97

5
B2

 ‐
$1

2,
97

5
C2

 ‐
$1

3,
97

5

48
K

A3
 ‐
$1

4,
97

5
B3

 ‐
$1

5,
97

5
C3

 ‐
$1

6,
97

5

64
K

A4
 ‐
$1

7,
97

5
B4

 ‐
$1

8,
97

5
C4

 ‐
$1

9,
97

5

De
pe

nd
in
g
on

 o
pt
io
ns
 in
st
al
le
d,
 th

e
51

00
 c
an

 ru
n
th
e
AP

L
(s
ee

 th
e
IB
M
 5
10

0
AP

L
re
fe
re
nc
e

m
an
ua
l)
an
d/
or
 B
AS

IC
 p
ro
gr
am

m
in
g
la
ng
ua
ge
s a

nd
 c
an

 h
av
e
16

K,
 3
2K

, 4
8K

 o
r 6

5K
 R
AM

(s
ee

 th
e
ta
bl
e
be

lo
w
 o
f t
w
el
ve
 d
iff
er
en
t m

od
el
s)
.

51
00

 IB
M
 P
or
ta
bl
e
Co

m
pu

te
r –

Pr
og
ra
m
m
in
g
la
ng
ua

ge
s

O
n
a
51

00
w
ith

bo
th

la
ng
ua
ge
s
(A
PL

an
d
BA

SI
C)
,t
he

us
er
's
ch
oi
ce

of
la
ng
ua
ge

is
se
le
ct
ed

by
a
to
gg
le
sw

itc
h
on

th
e
fr
on

tp
an
el
.

77APL - Journal 1/2/2016

50 years IBM APL 41 years IBM 5100
28

.0
3.
20

17
SE
IT
E
5

Th
e
51

00
ha
s
an

in
te
rn
al
fiv
e
in
ch

CR
T,
di
sp
la
yi
ng

16
lin
es

of
64

ch
ar
ac
te
rs
.B

ec
au
se

th
e

ch
ar
ac
te
rs
ar
e
so

sm
al
l,
IB
M

pr
ov
id
ed

a
th
re
e‐
po

sit
io
n
sw

itc
h
to

al
lo
w
th
e
us
er

to
se
le
ct

th
e
di
sp
la
y
of

al
l
64

ch
ar
ac
te
rs

of
ea
ch

lin
e,

or
on

ly
th
e
le
ft

or
rig

ht
32

ch
ar
ac
te
rs

(in
te
rs
pe

rs
ed

w
ith

sp
ac
es
).

51
00

 IB
M
 P
or
ta
bl
e
Co

m
pu

te
r ‐

sp
ec
ifi
ca
tio

ns

M
as
s
st
or
ag
e
w
as

pr
ov
id
ed

by
a
1/
4‐
in
ch

ca
rt
rid

ge
ta
pe

dr
iv
e
us
in
g
DC

30
0
ca
rt
rid

ge
s
to

st
or
e
20

4
KB

on
30

0
fe
et

ta
pe

.

In
st
ea
d
of

be
in
g
w
rit
te
n
in

th
e
na
tiv
e
m
ic
ro
co
de

in
st
ru
ct
io
n
se
t
of

th
e
pr
oc
es
so
r,
th
e

51
00

's
la
ng
ua
ge

in
te
rp
re
te
rs

(A
PL

an
d
BA

SI
C)

ar
e
w
rit
te
n
fo
r
m
or
e
so
ph

ist
ic
at
ed

vi
rt
ua

l
m
ac
hi
ne

s,
an
d
th
e
m
ic
ro
co
de

em
ul
at
es

th
os
e
m
ac
hi
ne

s.
Th

is
w
as

do
ne

in
or
de

r
to

ec
on

om
ize

on
th
e

am
ou

nt
of

RO
M

(r
ea
d‐
on

ly
m
em

or
y)

ne
ed

ed
to

im
pl
em

en
t
th
e

la
ng
ua
ge

in
te
rp
re
te
rs
,
an
d

po
ss
ib
ly

to
sp
ee
d

th
e

so
ft
w
ar
e

de
ve
lo
pm

en
t.

Th
e

AP
L

m
ic
ro
co
de

em
ul
at
es

a
su
bs
et

of
th
e

Sy
st
em

/3
60

in
st
ru
ct
io
n

se
t,

w
hi
le

th
e

BA
SI
C

m
ic
ro
co
de

em
ul
at
es

th
e
Sy
st
em

/3
.

78 APL - Journal 1/2/2016

50 years IBM APL 41 years IBM 5100

28
.0
3.
20

17
SE
IT
E
5

Th
e
51

00
ha
s
an

in
te
rn
al
fiv
e
in
ch

CR
T,
di
sp
la
yi
ng

16
lin
es

of
64

ch
ar
ac
te
rs
.B

ec
au
se

th
e

ch
ar
ac
te
rs
ar
e
so

sm
al
l,
IB
M

pr
ov
id
ed

a
th
re
e‐
po

sit
io
n
sw

itc
h
to

al
lo
w
th
e
us
er

to
se
le
ct

th
e
di
sp
la
y
of

al
l
64

ch
ar
ac
te
rs

of
ea
ch

lin
e,

or
on

ly
th
e
le
ft

or
rig

ht
32

ch
ar
ac
te
rs

(in
te
rs
pe

rs
ed

w
ith

sp
ac
es
).

51
00

 IB
M
 P
or
ta
bl
e
Co

m
pu

te
r ‐

sp
ec
ifi
ca
tio

ns

M
as
s
st
or
ag
e
w
as

pr
ov
id
ed

by
a
1/
4‐
in
ch

ca
rt
rid

ge
ta
pe

dr
iv
e
us
in
g
DC

30
0
ca
rt
rid

ge
s
to

st
or
e
20

4
KB

on
30

0
fe
et

ta
pe

.

In
st
ea
d
of

be
in
g
w
rit
te
n
in

th
e
na
tiv
e
m
ic
ro
co
de

in
st
ru
ct
io
n
se
t
of

th
e
pr
oc
es
so
r,
th
e

51
00

's
la
ng
ua
ge

in
te
rp
re
te
rs

(A
PL

an
d
BA

SI
C)

ar
e
w
rit
te
n
fo
r
m
or
e
so
ph

ist
ic
at
ed

vi
rt
ua

l
m
ac
hi
ne

s,
an
d
th
e
m
ic
ro
co
de

em
ul
at
es

th
os
e
m
ac
hi
ne

s.
Th

is
w
as

do
ne

in
or
de

r
to

ec
on

om
ize

on
th
e

am
ou

nt
of

RO
M

(r
ea
d‐
on

ly
m
em

or
y)

ne
ed

ed
to

im
pl
em

en
t
th
e

la
ng
ua
ge

in
te
rp
re
te
rs
,
an
d

po
ss
ib
ly

to
sp
ee
d

th
e

so
ft
w
ar
e

de
ve
lo
pm

en
t.

Th
e

AP
L

m
ic
ro
co
de

em
ul
at
es

a
su
bs
et

of
th
e

Sy
st
em

/3
60

in
st
ru
ct
io
n

se
t,

w
hi
le

th
e

BA
SI
C

m
ic
ro
co
de

em
ul
at
es

th
e
Sy
st
em

/3
.

79APL - Journal 1/2/2016

50 years IBM APL 41 years IBM 5100
28

.0
3.
20

17
SE
IT
E
7

51
00

 IB
M
 P
or
ta
bl
e
Co

m
pu

te
r –

a
lo
ok

 in
si
de

80 APL - Journal 1/2/2016

50 years IBM APL 41 years IBM 5100

IB
M
51

10

28
.0
3.
20

17
SE
IT
E
8


IB
M
51

10
 a
nn

ou
nc
ed

in
 1
97

8


St
ill
 in
cl
ud

in
g
ta
pe

dr
iv
e


Ad

di
tio

na
l 2
 D
isk

et
te
 d
riv

es

(IB
M
51

14
,1
.2
 M

by
te
 e
ac
h,

m
on

st
er
: l
ar
ge
, h
ea
vy
)


So
m
e
fu
nc
tio

ns
go
tm

uc
h
fa
st
er

e.
g.
 D
ya
di
c
Io
ta

IB
M
51
10

 m
ou

nt
ed

on
 d
isk

et
te

un
it

81APL - Journal 1/2/2016

50 years IBM APL 41 years IBM 5100

IB
M
51

20


Tw

o
ye

ar
s

af
te

r
la

un
ch

in
g

th
e

51
10

, I
B

M
 in

tr
od

uc
ed

 it
s

51
20

C

om
pu

te
r

Sy
st

em
 in

 F
eb

ru
ar

y
19

80
 a

s
th

e
lo

w
es

t-
pr

ic
ed

 I
B

M

co
m

pu
te

r
to

 d
at

e.
 A

 r
ep

re
se

nt
at

iv
e

co
nf

ig
ur

at
io

n
—

w
hi

ch
 in

cl
ud

ed
 a

m

ai
n

st
or

ag
e

ca
pa

ci
ty

 o
f 3

2,
76

8
ch

ar
ac

te
rs

 o
f i

nf
or

m
at

io
n,

 a
 1

20

ch
ar

ac
te

r-
pe

r-
se

co
nd

 p
ri

nt
er

 a
nd

 th
e

B
A

SI
C

 p
ro

gr
am

m
in

g
la

ng
ua

ge

—
co

ul
d

be
 p

ur
ch

as
ed

 fo
r

le
ss

 th
an

 $
13

,5
00

. O
ve

ra
ll

sy
st

em
 p

ri
ce

s
ra

ng
ed

 fr
om

 $
9,

34
0

to
 $

23
,9

90
.


T

he
 5

12
0

C
om

pu
te

r
S

ys
te

m
 fe

at
ur

ed
 th

e
ne

w
 d

es
kt

op
 IB

M
 5

11
0

M
od

el
 3

 c
om

pu
te

r
an

d
tw

o
pr

ev
io

us
ly

 a
nn

ou
nc

ed
 p

ro
du

ct
s:

 th
e

IB
M

51

03
 m

od
el

s
11

 a
nd

 1
2

bi
di

re
ct

io
na

l,
m

at
rix

 p
rin

te
rs

; a
nd

 th
e

IB
M

51

14
 d

is
ke

tte
 u

ni
t w

ith
 u

p
to

 2
.4

 m
eg

ab
yt

es
 o

f d
ire

ct
 a

cc
es

s
st

or
ag

e.28
.0
3.
20

17
SE
IT
E
9

82 APL - Journal 1/2/2016

50 years IBM APL 41 years IBM 5100

IB
M
51

20

28
.0
3.
20

17
SE
IT
E
10


IB
M
 5
12

0
‐a
nn

ou
nc
ed

in
 1
98

0


2
in
te
gr
at
ed

 d
isc

 d
riv

es
 (1

.2
 M

by
te
) n

o
lo
ng
er
 ta

pe
 d
riv

e


Ta
pe

 d
riv

e
co
ul
d
be

ad
de

d
as

ex
te
rn
al

un
it


Ex
tr
em

el
y
he

av
y
(s
om

e
 4
5
kg
s !
)


La
rg
er
 sc

re
en

bu
t s
til
l n
ot
 la
rg
e
en

ou
gh

83APL - Journal 1/2/2016

50 years IBM APL 41 years IBM 5100

IB
M
51

xx
 –
„A

m
az
in
g“
 o
pt
io
ns
 a
nd

 fe
at
ur
es

1
‐S
pe

ed
 u
p
th
e
pr
in
te
r f
ro
m
 8
0
ch
ar
/s
 to

 1
20

 c
ha

r/
s


Pr
ic
e:
 1
00

0
De

ut
sc
he

 M
ar
k


IB
M
 m

ad
e
on

ly
 a
 sm

al
l m

od
ifi
ca
tio

n
of
 th

e
ci
rc
ui
t b

oa
rd

2
‐A

dd
 a
 se

ria
l i
nt
er
fa
ce


Pr
ic
e:
 1
60

0
De

ut
sc
he

 M
ar
k


IB
M
 c
ha
ng
ed

 th
e
as
yn
ch
ro
no

us
 c
ab
le
 b
y
a
Y‐
ca
bl
e
th
at
 su

pp
or
te
d
bo

th
 th

e
as
yn
ch
ro
no

us
 p
or
t a

nd
 th

e
se
ria

l p
or
t

28
.0
3.
20

17
SE
IT
E
11

84 APL - Journal 1/2/2016

50 years IBM APL 41 years IBM 5100

IB
M
51

xx
 a
t M

cK
in
se
y


M
cK
in
se
y
st
ar
te
d
19

75
 w
ith

 th
e
fir
st
 IB

M
51

00
 (a
t a

 c
os
t o

f 8
0.
00

0
De

ut
sc
he

 M
ar
k)


Fr
om

 1
97

5
to
 1
98

0
M
cK
in
se
y
ha
d
bo

ug
ht
 fi
ve
 m

ac
hi
ne

s (
IB
M
51

00
, I
BM

51
10

,
IB
M
51

20
)


60

‐1
00

 d
ay
s P

ay
‐b
ac
k
pe

rio
d
of
 in
ve
st
m
en

t o
f 8

0.
00

0
DM

:


O
ne

 h
ou

r c
on

ne
ct
io
n
fo
r t
im

es
ha
rin

g
se
rv
ic
e:
 4
0
DM


O
ne

 h
ou

r p
ho

ne
 c
os
ts
 w
ith

 a
co
us
tic

 c
ou

pl
er
s t
o
Fr
an
kf
ur
t:
69

 D
M


Ti
m
es
ha
rin

g
CP

U
‐c
os
ts
 d
ep

en
di
ng

 o
n
th
e
am

ou
nt
 o
f d

at
a
(c
ou

ld
 b
e
so
m
e
20

0‐
50

0
DM

 p
er
 d
ay
)

28
.0
3.
20

17
SE
IT
E
12

85APL - Journal 1/2/2016

50 years IBM APL 41 years IBM 5100

IB
M
51

xx
 a
t M

cK
in
se
y
–
in
te
gr
at
ed

 d
ev
el
op

m
en

t p
ro
ce
ss
 w
ith

ho

st
 sy

st
em

28
.0
3.
20

17
SE
IT
E
13


AP

L‐
Pr
og
ra
m
s w

er
e
de

ve
lo
pe

d
an
d
te
st
ed

 w
ith

 sm
al
l d
at
a
se
t o

n
IB
M
51

00


Fu
nc
tio

ns
 a
nd

 d
at
a
w
er
e
se
nt
 to

 th
e
tim

es
ha
rin

g
co
m
pu

te
r (
se
nd

_a
ll
fu
nc
tio

ns

w
er
e
se
nd

in
g
th
e
w
ho

le
 w
or
ks
pa
ce
 to

 th
e
tim

es
ha
rin

g
sy
st
em

)


Th
e
AP

L‐
tim

es
ha
rin

g
sy
st
em

s a
t t
ha
t t
im

e
w
er
e:


IB
M
 H
am

bu
rg
 V
SA

PL
 ,
20

0K
 w
or
ks
pa
ce


Da

te
m
a
(S
w
ed

en
) w

ith
 V
M
‐C
M
S
up

 to
 e
no

rm
ou

s 1
6
M
B
(a
cc
es
s p

oi
nt
 in

Fr
an
kf
ur
t,
la
te
r i
n
Du

es
se
ld
or
f)


IB
M
 w
ith

 V
M
‐C
M
S
in
 D
ue

ss
el
do

rf
, u
p
to
 1
6M

B


IP
‐S
ha
rp
 (a
cc
es
s p

oi
nt
 B
ru
ss
el
s ?

)


AP
L‐
Pl
us
 (a
cc
es
s p

oi
nt
 D
ue

ss
el
do

rf
)

86 APL - Journal 1/2/2016

50 years IBM APL 41 years IBM 5100

St
ar
te
d
m
y
ow

n
ca
re
er
 w
he

n
I l
ef
t M

cK
in
se
y
in
 Ja

n
19

81


St
ar
t w

ith
 o
ne

 IB
M
51

20
 (s
to
ck
 o
rd
er
 m

ac
hi
ne

 4
8K

),
in
cr
ea
sin

g
to
 fi
ve
 a
ft
er
 3
 y
ea
rs


St
ill
 w
or
ki
ng

 w
ith

 ti
m
es
ha
rin

g

Sm
al
l w

or
ks
pa
ce
s r
eq

ui
re
 sp

ec
ia
l (
so
m
et
im

es
 a
m
az
in
g)
 p
ro
gr
am

m
in
g
(t
he

 m
ax
im

um

ne
t w

or
ks
pa
ce
 c
ou

ld
 n
ot
 e
xc
ee
d
57

K!
)


Re

ct
an
gu
la
r l
oo

ki
ng

 fu
nc
tio

ns
 w
ith

 sh
or
t v

ar
ia
bl
e
or
 fu

nc
tio

n
na
m
es


Ru

n
w
or
ks
pa
ce
 :
Fu
nc
tio

ns
 w
er
e
de

‐c
om

m
en

te
d
to
 sa

ve
 w
or
ks
pa
ce
, s
om

et
im

es

so
m
e
gu
ys
 e
ve
n
di
d
a
pr
ec
om

pi
le
 w
or
k
on

 fu
nc
tio

ns
 (b

ra
nc
hi
ng

 to
 a
 li
ne

 n
um

be
r,

no
 lo
ng
er
 la
be

ls
 ‐
ne

ar
ly
 u
nr
ea
da
bl
e‐

bu
t
re
su
lte

d
in
 fa

st
er
 e
xe
cu
tio

n)


Fi
le
 sy

st
em

 to
 lo
ad

 a
nd

 u
nl
oa
d
fu
nc
tio

ns
 to

 sa
ve
 w
or
ks
pa
ce


Bl
oc
kl
oo

pi
ng

m
et
ho

ds
 fo

r g
ro
up

su
m
m
in
g

28
.0
3.
20

17
SE
IT
E
14

IB
M
51

xx
 a
t G

er
al
d
D
itt
ric

h
Co

ns
ul
tin

g

87APL - Journal 1/2/2016

50 years IBM APL 41 years IBM 5100

IB
M
51

xx
 a
t G

er
al
d
D
itt
ric

h
Co

ns
ul
tin

g
‐s
om

e
ex
am

pl
e
pr
oj
ec
ts

BM
W
 m

ot
or

pr
od

uc
tio

n:
 si
m
ul
at
io
n
of
 1
60

 re
al
‐t
im

e
ho

ur
s


Pr
od

uc
tio

n
lin

e
: u

p
to
 2
00

 st
at
io
ns
 in

 1
5
se
ct
io
ns


St
at
io
ns
: d

ril
lin
g,
 tu

rn
in
g,
de

bu
rr
in
g,
 m

ill
in
g,
 h
on

in
g,
la
pp

in
g,

sa
w
in
g,
gr
in
di
ng
, w

as
hi
ng

 a
nd

 m
or
e


O
pt
im

izi
ng

 b
uf
fe
rs
 b
et
w
ee
n
se
ct
io
ns
, o
pt
im

izi
ng

 m
ai
nt
en

an
ce
 st
ra
te
gy


16

0
re
al
‐t
im

e
ho

ur
s m

ea
nt
 7
0
ho

ur
s o

n
a
IB
M
51

20


20
 si
m
ul
at
io
ns
 to

 d
o


A
tr
y
of
 1
6
ho

ur
s r
ea
l‐t
im

e
on

 IP
Sh
ar
p
re
su
lte

d
 in

 c
os
ts
 o
f 1

,5
00

 D
M


20

 s
im

ul
at
io
ns
 o
f 1

60
 re

al
‐t
im

e
ho

ur
s w

ou
ld
 m

ea
n
30

0,
00

0
DM


De

ci
sio

n:
 ru

n
sim

ul
at
io
ns
 o
n
5
IB
M
51

xx


Af
te
r s
om

e
12

 d
ay
s:
 v
er
y
go
od

 re
su
lts


N
o
sy
st
em

 e
rr
or
s,
 n
o
sh
ut
do

w
ns
 ,
ea
ch
 si
m
ul
at
io
n
fin

ish
ed

28
.0
3.
20

17
SE
IT
E
15

88 APL - Journal 1/2/2016

50 years IBM APL 41 years IBM 5100

IB
M
51

xx
 in

 m
us
eu

m
s


IB
M
51

10
 se

en
19

93
 in
 T
ec
hn

ic
al
 M

us
eu

m
 K
op

en
ha
ge
n


IB
M
51

xx
 se

en
20

10
 a
t T

ec
hn

ic
al
 M

us
eu

m
 B
er
lin

 w
he

re
yo
u
ca
n
al
s s

ee
th
e

w
or
ld
w
id
e
fir
st
 c
om

pu
te
r Z

us
e
(s
til
l w

or
ki
ng
, k
ep

ta
liv
e
be

i t
he

 so
n
of

Ko
nr
ad

 Z
us
e)


IB
M
 m

us
eu

m
at
 S
tu
tt
ga
rt


Pr
iv
at
e
M
us
eu

m
 G
er
al
d
Di
tt
ric
h
in
 S
ol
in
ge
n
: 3

 m
ac
hi
ne

s I
BM

51
00

,
IB
M
51

10
, I
BM

51
20

, p
rin

te
r I
BM

51
03

, d
isk

et
te
 u
ni
t I
BM

51
14

, e
ac
h

m
ac
hi
ne

is
st
ill
 w
or
ki
ng


O
th
er
 m

us
eu

m
s?

28
.0
3.
20

17
SE
IT
E
16

89APL - Journal 1/2/2016

50 years IBM APL 41 years IBM 5100

Pr
iv
at
e
M
us
eu

m
 o
f G

er
al
d
Di
tt
ric
h
in
 S
ol
in
ge
n

Pr
in
ze
ns
tr
. 2

28
.0
3.
20

17
SE
IT
E
17

90 APL - Journal 1/2/2016

50 years IBM APL 41 years IBM 5100

DP
C
in
 S
ol
in
ge
n
vi
ew

ed
 fr
om

 a
 q
ua
dr
oc
op

te
r

28
.0
3.
20

17
SE
IT
E
18

91APL - Journal 1/2/2016

50 years IBM APL 41 years IBM 5100

In
te
lli
ge
nt
 d
at
a
|
In
te
lli
ge
nt
 d
oc
um

en
ts

Vi
sit

us
!


w
w
w
.d
pc
.d
e
 |
 i
nf
o@

dp
c.
de

28
.0
3.
20

17
SE
IT
E
19


w
w
w
.d
pc
‐s
of
tw

ar
e.
de

 |
 w

w
w
.d
pc
‐s
of
tw

ar
e.
nl
 |
 w

w
w
.d
pc
‐s
of
tw

ar
e.
eu

92 APL - Journal 1/2/201692

Impressum

Beitragssätze
Ordentliche Mitglieder:
Natürliche Personen 32,- EUR*
Studenten / Schüler 11,- EUR*

Außerordentliche Mitglieder:
Jurist./natürl. Pers. 500,- EUR*

* Jahresbeitrag

Bankverbindung
BVB Volksbank eG Bad Vilbel
BLZ 518 613 25
Konto-Nr. 523 2694

Hinweis:
Wir bitten alle Mitglieder, uns
Adressänderungen und neue
Bankverbindungen immer sofort
mitzuteilen. Geben Sie bei Über-
weisungen den namen und/oder
die Mitgliedsnummer an.

Allgemeine Informationen

(Stand 2016)

Einzugsermächtigung Mitglieds-Nr.: ________________

Ich erkläre mich hiermit widerrufl ich damit einverstanden, daß APL Germany e.V. den jeweils gültigen
Jahres-Mitgliedsbeitrag von meinem unten angegebenen Konto abbucht. Mit der Datenübermittlung an
das oben genannte Kreditinstitut bin ich einverstanden. Einen eventuell bestehenden Dauerauftrag habe
ich bei meiner Bank gelöscht.

Bankbezeichnung: __

BLZ: __________________________ Konto-Nr.: ____________________________________

Datum: __________________________ Unterschrift: ____________________________________

APL-Germany e.V. ist ein ge-
meinnütziger Verein mit Sitz in
Düsseldorf. Sein Zweck ist es, die
Pro gram miersprache APL, sowie
die Verbreitung des Verständnis-
ses der Mensch-Maschine Kom-
munikation zu fördern. Für In te-
res senten, die zum Gedankenaus-
tausch den Kontakt zu anderen
APL-Benut zern su chen, sowie
für sol che, die sich ak tiv an der
Weiter ver brei tung der Sprache

1. Vorstandsvorsitzender

Dr. Reiner Nussbaum
Dr. Nussbaum gift mbH, Bu-
chenerstr. 78, 69259 Mannheim,
Tel. (0621) 7152190.

2. Vorstandsvorsitzender:

Martin Barghoorn
Zentraleinrichtung für Datenver-
arbeitung (ZEDAT),
Fabeckstraße 32, 14195 Berlin,
Tel. (030) 804 03 192
eMail: Barghoorn@zedat.fu-
berlin.de

Schatzmeister

Jürgen Beckmann
Im Freudenheimer Grün 10
68259 Mannheim
Tel. 0621 7 98 08 40,
eMail: JBecki@onlinehome.de

APL beteiligen wollen, bietet APL-
Germany den adäquaten organi-
satorischen Rahmen.

Auf Antrag, über den der Vorstand
entscheidet, kann jede natürliche
oder juristische Person Mitglied
werden. Organe des Vereins sind
die mindestens einmal jährlich
stattfi ndende Mitgliederversamm-
lung sowie der jeweils auf zwei
Jahre gewählte Vorstand.

APL-Journal
35. Jg. 2016, ISSN 1438-4531
Herausgeber: Dr. Reiner Nuss-
baum, APL-Germany e.V., Mann-
heim, http://www.apl-germany.de
Redaktion: Dipl.-Volksw. Martin
Barghoorn (verantw.), FU Berlin,
Zentraleinrichtung für Datenverar-
beitung (ZEDAT), Fabeckstraße 32,
14195 Berlin, Tel. (030) 804 03 192
Verlag: RHOMBOS-VERLAG, Ber-
lin, Kurfürstenstr. 15/16, D-10785
Berlin, Tel. (030) 261 9461, eMail:
verlag@rhombos.de, Internet:
www.rhombos.de
Erscheinungsweise: halbjährlich
Erscheinungsort: Berlin
Satz: Rhombos-Verlag
Druck: dbusiness.de GmbH, Berlin
Copyright: APL Germany e.V. (für
alle Beiträge, die als Erstveröffent-
lichung erscheinen)

Fotonachweis Titelseite und Um-

schlagseite 4: Martin Barghoorn
Die Wiedergabe von Gebrauchsnamen, Han-
delsnamen, Warenbezeichnungen usw. in
diesem Werk berechtigt auch ohne besondere
Kennzeichnung nicht zu der Annahme, dass
solche Namen im Sinne der Warenzeichen-
und Markenschutzgesetzgebung als frei zu
betrachten wären und daher von jedermann
benutzt werden dürfen. Eine Haftung für die
Richtigkeit der veröffentlichten Informationen
kann trotz sorgfältiger Prüfung von Heraus-
geber und Verlag nicht übernommen werden.
Mit Namen gekennzeichnete Artikel ge-
ben nicht unbedingt die Meinung des
Herausgebers oder der Redaktion wieder.
Für unverlangte Einsendungen wird keine
Haftung übernommen. Nachdruck ist nur
mit Zustimmung des Herausgebers sowie
mit Quellenangabe und Einsendung eines
Beleges gestattet. Überarbeitungen einge-
sandter Manuskripte liegen im Ermessen
der Redaktion.

�

RH
O

M
BO

S-
VE

RL
A

G

IS
SN

 -
 1

43
8-

45
31

Ja

hr
ga

ng
 3

5
N

r.
1-

2
20

16
 D

op
pe

ln
um

m
er

 A

PL
-G

er
m

an
y

e.
V.

1-2/2016

Michael Baas

Bericht von Dyalog
2016

IM BLICKPUNKT

James A. Brown
A Personal History of APL

Jon McGrew
Forgotten APL Infl uences

James A. Brown and
Peter Schade
The Evolution of Computing

www.apl-germany.de

A Programming Language

APL-Journal

